欢迎访问《中外公路》官方网站,今天是
分享到:
基于Bayes‑LST M的公路隧道围岩变形预测方法研究
作者:
作者单位:

(1.中交第一公路勘察设计研究院有限公司 ,陕西 西安 710076 ;2.西安电子科技大学 ,陕西 西安 710065 )

作者简介:

刘智,男,硕士,高级工程师.E-mail:darcy_liu@163.com

通讯作者:

中图分类号:

U456.3

基金项目:

中国交建科技研发项目(编号:2019-ZJKJ-08);中交第一公路勘察设计研究院有限公司科技研发项目(编号:KYHT2020-43);中交第一公路勘察设计研究院有限公司科创基金项目(编号:KCJJ2020-19)


Prediction Method of Surrounding Rock Deformation of Highway Tunnels Based on Bayes‑LSTM
Author:
Affiliation:

(1.CCCC First Highway Consultants Co ., Ltd., Xi'an , Shaanxi 710076 , China ; 2.Xidian University , Xi'an , Shaanxi 710065 , China )

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在公路隧道施工过程中,围岩的稳 定性 对隧道施工的影响较大。因此公路隧道围岩变形的监控量测与准确预测是保障隧道施工安全的关键。针对当前隧道围岩变形的预测精度较低以及泛化能力较差等问题,该文提出一种基于贝叶斯 (Bayes )优化长短期记忆网络 (LSTM )的方法,该方法首先对拱顶沉降和周边收敛的原始监测数据进行预处理,而后构建公路隧道拱顶沉降与周边收敛的初始 LSTM 模型,并利用 Bayes 优化模型中的超参数,最终得出预测结果。利 用 该 模 型 对 某 公 路 隧 道 拱 顶 沉 降 和 周 边 收 敛 进 行 预 测,将 预 测 结 果 以 均 方 根 误 差 为 评 价 指 标 与 神 经 网 络(CNN )和支持向量回归 (SVR )进行对比。预测拱顶沉降时,Bayes-LSTM 模型的平均预测精度相较于 CNN 与SVR模型分别提高了 1.0与1.26;预测周边收敛时,Bayes-LSTM 模型平均精度相较于 CNN 与SVR 分别提高了 0.3与0.32。表明 Bayes-LSTM 模型的预测精度较高,同时其能在训练模型过程中对历史信息进行判断和取舍,极大地提高了时序数据处理的效率,为公路隧道围岩变形预测提供了新的思路和探索。

    Abstract:

    In the process of highway tunnel construction,the stability of surrounding rock has a great impact on tunnel construction.Therefore,the monitoring measurement and accurate prediction of surrounding rock deformation of highway tunnels are the keys to ensuring the safety of tunnel construction.In view of the low prediction accuracy and poor generalization ability of tunnel surrounding rock deformation,this paper proposed a Bayesian (Bayes )-based method to optimize the long-term and short-term memory (LSTM ) network.The method first preprocessed the original monitoring data of crown settlement and peripheral convergence,then constructed the initial LSTM model of crown settlement and peripheral convergence of highway tunnels,and used the super parameters in the Bayes optimization model to obtain the prediction results.The model was used to predict the crown settlement and peripheral convergence of a highway tunnel,and the prediction results were compared with convolutional neural network (CNN ) and support vector regression (SVR ) using root mean square error as the evaluation index.When the crown settlement was predicted,the average prediction accuracy of the Bayes-LSTM model was 1.0 and 1.26 higher than that of the CNN and SVR models,respectively.When peripheral convergence was predicted,the average accuracy of the Bayes-LSTM model was 0.3 and 0.32 higher than that of CNN and SVR,respectively.The results show that the Bayes-LSTM model has higher prediction accuracy,and it can judge and choose the historical information in the process of model training,which greatly improves the efficiency of time series data processing.The model provides a new idea for the prediction of surrounding rock deformation of highway tunnels.

    参考文献
    相似文献
    引证文献
引用本文

刘智,李欣雨,李震,等.基于Bayes‑LST M的公路隧道围岩变形预测方法研究[J].中外公路,2024,44(1):166-176.
LIU Zhi, LI Xinyu, LI Zhen, et al. Prediction Method of Surrounding Rock Deformation of Highway Tunnels Based on Bayes‑LSTM[J]. Journal of China and Foreign Highway,2024,44(1):166-176.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-18
  • 出版日期:
文章二维码
网站二维码
期刊公众号