悬索桥钢混组合式主索鞍构造优化研究
DOI:
作者:
作者单位:

1.长沙理工大学;2.长沙理工大学 土木工程学院

作者简介:

通讯作者:

中图分类号:

U443.38

基金项目:

国家自然科学基金资助项目(编号:52278143)


Study on structural optimization of steel-concrete composite main cable saddle of suspension bridge
Author:
Affiliation:

1.Changsha University Of Science &2.Technology;3.-

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文依托国内某特大桥主索鞍设计方案,本文采用混凝土塑性损伤理论(CDP模型)并结合有限元软件ABAQUS,对新型钢-混凝土组合主索鞍的结构进行了优化分析。通过系统地分析了钢结构鞍头的不同设计、剪力键的不同连接方式以及混凝土鞍体的构造对组合主索鞍承载能力的影响。研究表明,采用平面设计的鞍头上承板底面导致混凝土鞍体出现显著的塑性受拉损伤。相比之下,将上承板底面设计为曲面可以显著提升钢-混凝土组合主索鞍的受力性能。在对型钢、栓钉以及PBL三种剪力键的分析比较中,发现型钢剪力键两侧的混凝土鞍体均出现了广泛的塑性受拉损伤;相较于型钢剪力键,PBL剪力键两侧的混凝土损伤更为严重,且钢板两侧的混凝土及混凝土榫均出现了大范围的塑性受拉损伤,结果表明,栓钉剪力键鞍体塑性受拉损伤最小。为了降低钢材使用量,将钢结构鞍头上承板的厚度控制在50mm是最为理想的,同时,鞍头两侧混凝土鞍体斜坡角度的最佳控制角度为45°,混凝土鞍体的损伤最小。当混凝土材料从C50更换为超高性能混凝土(UHPC)时,在3倍设计荷载作用下,鞍体中心的塑性受拉损伤显著减小至0.2,UHPC显著提高了钢-混凝土组合主索鞍的极限承载能力。综上所述,钢混组合式主索鞍作为一种新型构造,在国内具有广阔的运用前景和重要的价值,通过进一步的研究和实践,可以推动其在国内桥梁工程中的广泛应用,为桥梁建设提供更经济、高效的解决方案,并提高桥梁的承载能力和安全性能。

    Abstract:

    Based on the design scheme of a main cable saddle for a mega bridge domestically, this paper employs the concrete plastic damage theory (CDP model) in conjunction with the finite element software ABAQUS for an optimized analysis of the structure of a new type of steel-concrete composite main cable saddle. Through a systematic analysis of the effects of different designs of the steel structure saddle head, different connection methods of shear keys, and the construction of the concrete saddle body on the load-bearing capacity of the composite saddle, the study shows that using a flat design for the bottom surface of the upper bearing plate on the saddle head leads to significant plastic tensile damage in the concrete saddle body. In contrast, designing the bottom surface of the upper bearing plate as curved significantly enhances the force performance of the steel-concrete composite main cable saddle. In the analysis and comparison of three types of shear keys: shaped steel, bolts, and PBL, it was found that the concrete saddle body on both sides of the shaped steel shear keys exhibited extensive plastic tensile damage; compared to shaped steel shear keys, the concrete damage on both sides of the PBL shear keys was more severe, and the concrete on both sides of the steel plate and the concrete tenon showed a wide range of plastic tensile damage, indicating that the bolt shear keys resulted in the least plastic tensile damage to the saddle body. To reduce the use of steel, controlling the thickness of the steel structure saddle head's upper bearing plate to 50mm is ideal, and the best control angle for the slope of the concrete saddle body on both sides of the saddle head is 45°, where the damage to the concrete saddle body is minimal. When the concrete material is switched from C50 to Ultra High Performance Concrete (UHPC), under the action of three times the design load, the plastic tensile damage at the center of the saddle body is significantly reduced to 0.2, markedly improving the ultimate load-bearing capacity of the steel-concrete composite main cable saddle. In summary, as a new type of construction, the steel-concrete composite main cable saddle has broad application prospects and significant value domestically. Through further research and practice, its extensive application in domestic bridge engineering can be promoted, offering more economical and efficient solutions for bridge construction, and enhancing the load-bearing capacity and safety performance of bridges.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-11
  • 最后修改日期:2024-03-15
  • 录用日期:2024-03-28
  • 在线发布日期:
  • 出版日期: