欢迎访问《中外公路》官方网站,今天是
分享到:
基于机器视觉的公路桥梁变形测量及安全预警
作者:
作者单位:

(1.河海大学 力学与材料学院 ,江苏 南京 211100;2.河海大学 苏州研究院 ,江苏 苏州 215100)

作者简介:

苏子玥,女,硕士研究生.E-mail:ziyuesu@hhu.edu.cn

通讯作者:

雷冬,男,博士,教授,博士生导师.E-mail:leidong@hhu.edu.cn

中图分类号:

U447

基金项目:

国家自然科学基金资助项目(编号:12172120);江苏省研究生科研创新计划项目(编号:KYCX23_0660);苏州市科技发展计划项目(编号:SYC2022080)


Deformation Measurement and Safety Warning of Highway Bridges Based on Machine Vision
Author:
Affiliation:

(1.College of Mechanics and Materials , Hohai University , Nanjing , Jiangsu 211100 , China ; 2.Suzhou Research Institute , Hohai University , Suzhou , Jiangsu 215100 , China )

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    公路桥梁结构安全对交通安全运营和区域经济发展起到关键作用,但由于交通荷载的快速增加和复杂变化,桥梁结构变形及安全状况实时监测的需求日益凸显。然而,以接触式传感器为主的结构健康监测系统存在安装施工难、维护更换繁、需要中断交通等局限。为此,该文提出了一种基于机器视觉的非接触式变形测量系统,利用模板匹配和特征点识别方法,实现结构表面标记的识别和关键位置的位移提取,并通过实验室和现场试验对视觉方法的准确性和稳定性开展测试。此外,针对实际桥梁结构运营状况建立相匹配的有限元分析模型,通过动静力学试验设定多级预警阈值,进一步判定结构的安全状况。试验结果表明:① 所建立的视觉变形测量系统位移测量误差在 5%以内,振动频率误差在 1%以内;② 基于模板匹配和特征点识别的测量技术能够对结构自有特征进行识别,满足长期性变形监测的需求;③ 通过多工况下有限元分析,可以为结构长期位移监测设置预警阈值。

    Abstract:

    The structural safety of highway bridges plays a crucial role in traffic safety operations and regional economic development.Due to the rapid increase and complex changes in traffic loads,the demand for real-time monitoring of bridge ’s structural deformation and safety conditions has been increasingly prominent.However,the structural health monitoring system,dominated by contact sensors,has limitations such as difficult installation and construction,complicated maintenance and replacement,and the need to interrupt traffic.To this end,a non-contact deformation measurement system based on machine vision was proposed.Template matching and feature point recognition methods were utilized to achieve recognition of structural surface markings and displacement extraction of key positions.The accuracy and stability of visual methods were tested through laboratory and on-site experiments.In addition,a corresponding finite element model was built for the actual operation status of the bridge structure,and the multi-level warning threshold was set through the dynamic and static mechanical experiments to further determine the safety status of the structure.The experimental results show as follows.① The displacement measurement error of the established visual deformation measurement system is within 5%,and the error of vibration frequency is within 1%;② Measurement techniques based on template matching and feature point recognition can recognize the inherent features of structures,and meet the needs of long-term deformation monitoring;③ Through finite element analysis under multiple working conditions,warning thresholds can be set for long-term displacement monitoring of structures.

    参考文献
    相似文献
    引证文献
引用本文

苏子玥,杜文康,雷冬.基于机器视觉的公路桥梁变形测量及安全预警[J].中外公路,2024,44(5):248-258.
SU Ziyue, DU Wenkang, LEI Dong. Deformation Measurement and Safety Warning of Highway Bridges Based on Machine Vision[J]. Journal of China and Foreign Highway,2024,44(5):248-258.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-28
  • 出版日期:
文章二维码
网站二维码
期刊公众号