欢迎访问《中外公路》官方网站,今天是
分享到:
面向高强度螺栓检测的YOLOv 5‑Ganomaly联合算法研究
CSTR:
作者:
作者单位:

(1.长沙理工大学 土木工程学院 ,湖南 长沙 410144;2.湖南省中南桥梁设备制造有限公司 ,湖南 怀化 418000;3.湖南省建设工程质量检测中心有限责任公司 ,湖南 长沙 410000)

作者简介:

谢海波,男,博士,讲师.E-mail:bridgexhb@126.com

通讯作者:

中图分类号:

U446

基金项目:

湖南省自然科学基金资助项目(编号:2022JJ50324)


Research on YOLOv 5‑Ganomaly Joint Algorithm for High‑Strength Bolt Detection
Author:
Affiliation:

(1.School of Civil Engineering , Changsha University of Science & Technology ,Changsha ,Hunan 410144 ,China;2.Hunan Central South Bridge Equipment Manufacturing Co ., Ltd.,Huaihua ,Hunan 418000 ,China;3.Construction Quality Inspection Center of Hunan Province Co ., Ltd.,Changsha ,Hunan 410000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对桥梁高强度螺栓松动检测工作量大、目标小、异常多且难以获取等问题,该文提出一种半监督深度学习模型,即使少量负样本情况下也可得到螺栓松动检测模型,解决了模型训练样本不平衡的问题。YOLOv 5-CT模型对螺栓目标检测的精度达 98.33%。通过对螺栓数据进行预处理,提高 Ganomaly 模型对螺栓图像的重构能力。当隐空间向量值为 100时,模型的 SAUC最高,具有最佳判别性能。在模型测试阶段,将异常分数阈值设置为 0.295,计算模型对高强度螺栓异常松动检测的精度可达到 85%以上,实现螺栓的自动识别和检测。

    Abstract:

    High-strength bolt loosening detection of bridges faces problems such as heavy workload,small targets,many anomalies,and difficult collection.Therefore,this paper proposed a semi-supervised deep learning model,which could obtain the bolt loosening detection model even with a small number of negative samples and solve the problem of unbalanced model training samples.The accuracy of the YOLOv 5-CT model for bolt target detection reached 98.33%.By preprocessing bolt data,the reconstruction ability of bolt images by the Ganomaly model was improved.When the hidden space vector value was 100,the model had the highest SAUC and the best discriminant performance.In the model test stage,the threshold of abnormal fraction was set to 0.295,and the accuracy of the calculation model for abnormal loosening detection of high-strength bolts could reach more than 85%.As a result,the automatic identification and detection of bolts were realized.

    参考文献
    相似文献
    引证文献
引用本文

谢海波,朱玮峻,张璧,等.面向高强度螺栓检测的YOLOv 5‑Ganomaly联合算法研究[J].中外公路,2024,44(4):171-179.
XIE Haibo, ZHU Weijun, ZHANG Bi, et al. Research on YOLOv 5‑Ganomaly Joint Algorithm for High‑Strength Bolt Detection[J]. Journal of China and Foreign Highway,2024,44(4):171-179.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-30
  • 出版日期:
文章二维码
网站二维码
期刊公众号