U492.313 TP183
公安部应用创新计划
在分析公路货运量的影响因素和预测特点的基础上,将PSO算法的全局搜索能力和RBF神经网络局部优化相结合,建立了基于改进PSO算法和RBF神经网络的公路货运量预测模型(MPSO-RBF).利用某城市的历史数据对预测模型进行了训练、测试与仿真,同时将仿真结果与回归分析法、灰色理论法、BP神经网络和RBF神经网络预测的结果进行了比较,结果表明文中提出的预测方法精度较高,对于公路货运量预测具有一定的可行性和有效性.
马永红,马昌喜,郭坤卿.基于MPSO-RBF的公路货运量预测方法研究[J].中外公路,2008,(5)..[J]. Journal of China and Foreign Highway,2008,(5).