欢迎访问《中外公路》官方网站,今天是
分享到:
融合道路附着约束的智能车辆路径跟踪控制
DOI:
CSTR:
作者:
作者单位:

1.东南大学 机械工程学院;2.武汉理工大学;3.上海汽车集团股份有限公司创新研究开发院;4.香港理工大学

作者简介:

通讯作者:

中图分类号:

U461.91

基金项目:

国家自然科学(编号:52402482)


Intelligent vehicle path tracking control integrating road adhesion constrain
Author:
Affiliation:

1.School of Mechanical Engineering,Southeast University;2.Wuhan University of Technology;3.Innovation Research and Development Institute, SAIC Motor Corporation Limite;4.The Hong Kong Polytechnic University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在智能车辆路径跟踪的容错控制领域,现有的基于模型预测控制(MPC)的方法存在局限性,常假定车辆模型参数固定,忽视了车辆载荷变化及外部环境干扰等因素导致的模型参数动态变化对路径跟踪精度的影响。且在转向系统故障时,MPC 计算的前轮转角指令无法直接执行,需转换为横摆力矩控制,而现有滑模横摆力矩控制方法虽鲁棒性强,但抖振问题影响系统稳定性与执行效果。针对这些问题,本文提出融合基于模型参数在线更新的 MPC 与自适应滑模控制的路径跟踪容错控制方案。通过在线更新 MPC 模型参数,提升对车辆动态特性的适应能力,利用自适应滑模控制降低抖振影响,并结合路面附着约束优化驱动力矩分配实现路径跟踪。研究结果表明所提算法的跟踪精度优于传统MPC算法,可以实现更精准、稳定的路径跟踪控制,为智能车辆路径跟踪控制技术发展提供新的思路与方法。

    Abstract:

    In In the field of fault tolerant control for intelligent vehicle path tracking, the existing methods based on model predictive control (MPC) have limitations. They often assume that the vehicle model parameters are fixed and ignore the impact of dynamic changes in model parameters, which are caused by factors such as vehicle load changes and external environmental interference, on the path tracking accuracy. When the steering system fails, the front wheel steering angle commands calculated by MPC cannot be directly executed and need to be converted into yaw moment control. Although the existing sliding mode yaw moment control methods have strong robustness, the chattering problem affects the stability and execution effect of the control system.To address these issues, this paper proposes a path tracking fault tolerant control scheme that integrates MPC with online model parameter updating and adaptive sliding - mode control. By updating the MPC model parameters online, the adaptability to the dynamic characteristics of the vehicle is improved. The adaptive sliding - mode control is used to reduce the impact of chattering, and the driving torque distribution is optimized in combination with road adhesion constraints to achieve path tracking. The research results show that the tracking accuracy of the proposed algorithm is better than that of the traditional MPC algorithm, and it can achieve more accurate and stable path tracking control, providing new ideas and methods for the development of intelligent vehicle path tracking control technology.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-10
  • 最后修改日期:2025-03-27
  • 录用日期:2025-04-25
  • 在线发布日期:
  • 出版日期:
文章二维码
网站二维码
期刊公众号