欢迎访问《中外公路》官方网站,今天是
分享到:
基于改进灰色模型的农村公路路面使用性能预测
DOI:
CSTR:
作者:
作者单位:

长沙理工大学 交通运输工程学院

作者简介:

通讯作者:

中图分类号:

U418.6

基金项目:

国家自然科学基金资助项目(编号:52278436);湖南省交通科技项目(编号:202201);湖南省交通科技项目(编号:202219)


Prediction of Pavement Performance of Rural Roads Based on Improved grey Models
Author:
Affiliation:

School of Traffic and Transportation Engineering,Changsha University of Science Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高农村公路路面使用性能的预测精度,针对农村公路路面使用性能影响因素多、数据积累年限少、传统灰色模型预测精度低的实际问题,该文采用熵值赋权处理后的灰色模型预测农村公路路面使用性能,并用粒子群算法和马尔可夫模型对灰色模型的预测结果进行修正,形成改进灰色模型。结合湖南省近年农村公路水泥路面路面使用性能的检测数据,在分析路面使用性能影响因素的前提下,以基层类型、面层厚度、排水设施类型将农村公路水泥路面分为6类,用改进灰色模型对农村公路6类道路路面使用性能进行预测。结果表明,相对传统灰色预测模型,经过马尔可夫模型和粒子群算法改进后的模型显著降低了A—F类道路预测值与原始值之间的相对误差绝对值和均方根误差,相对误差绝对值的平均减小幅度为50.17%,均方根误差的平均减小值为0.73,提高了预测精度。说明改进灰色模型模型能准确的预测农村公路路面使用性能,预测结果能反映A—F类道路在预测年份内路面使用性能变化情况。

    Abstract:

    In order to improve the prediction accuracy of rural road pavement performance, for the practical problems of many factors affecting the pavement performance of rural roads, few years of data accumulation and low prediction accuracy of traditional grey model, this paper adopts the grey model after entropy assignment processing to predict the pavement performance of rural roads, and amends the prediction results of the grey model with the Particle Swarm Algorithm and Markov Model to form an improved grey model. Combined with the test data of pavement performance of cement pavement of rural roads in Hunan Province in recent years, under the premise of analyzing the influencing factors of pavement performance, the cement pavement of rural roads is classified into 6 categories with the type of grass-roots level, the thickness of surface layer, and the type of drainage facilities, and the improved grey model is used to predict the performance of pavement of the 6 categories of rural roads. The results show that relative to the traditional grey prediction model, the model improved by Markov model and particle swarm algorithm significantly reduces the absolute value of relative error and root mean square error between the predicted value and the original value of the A—F class roads, and the average reduction of the absolute value of the relative error is 50.17%, and the average reduction of the root mean square error is 0.73, which improves the prediction accuracy. It shows that the improved grey model model can accurately predict the pavement performance of rural roads, and the prediction results can reflect the changes of pavement performance of Class A-F roads in the predicted years.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-15
  • 最后修改日期:2025-04-22
  • 录用日期:2025-04-28
  • 在线发布日期:
  • 出版日期:
文章二维码
网站二维码
期刊公众号