DOI:10.14048/j. issn. 1671-2579. 2022.03.009

基于三维激光的车辙表面纹理特征研究

陆树荣

(湖州市交通规划设计院,浙江 湖州 313000)

摘要:路面的车辙损坏严重影响行车安全,时常引发交通事故,造成重大经济损失。该文为了探究车辙表面的纹理特征,设计试验模拟车辙的形成过程,采用基于三维激光的深度相机采集车辙和非车辙的点云数据,计算车辙的表面纹理特征参数。选取平均构造深度 MPD、功能参数和体积参数。经计算结果分析,有车辙的平均构造深度 MPD、突出谷部高度 S_{**} 、谷部的空隙容积 V_{**} 的数值均小于非车辙。利用这 3 个参数建立 SVM 的车辙判断预估模型,判断准确率为 91.7%。

关键词:三维激光;车辙;路面纹理;特征参数 中图分类号: U416.2 **文献标志码**: A

车辙是道路轮迹带处由车辆荷载所引起的纵向持 久下凹变形,表现为路面上留下的车轮的压痕,轮迹处 的深度是衡量路面受车辙破坏程度的一个重要指标。 车辙是高等级路面上最常见的病害之一,若车辙病害 严重到一定程度将影响乘车舒适性和行车安全性;同 时它也是路面进一步破损的诱因,若不及时养护,当沥 青的延展性达到极限时可能造成其他病害龟裂、块状 裂缝、松散等的产生[1]。

对车辙的传统研究主要是在道路检测方法的探究 上。路面车辙检测的方法从形式上大致可以分为接触 式和非接触式两种。接触式测量是把检测设备与路面 直接接触进行检测,记录相对应的数据。主要检测设 备有:路面横断面仪/尺,精密水准测量仪,表面高程计 等。非接触式检测的设备传感器不与被检测的路面直 接接触,可快速地进行车辙检测,主要的检测方法有超 声波检测和激光检测[2-3]。其中,激光检测又分为点 激光和线激光[4-5]。目前主要研究集中在激光线的提 取方法,如图像处理方法和光条灰度重心法。2013 年,李莉和孙立军[6] 等提出了适应沥青路面纹理特征 和技术状况的线结构光图像处理流程,包括路面横断 面曲线提取和车辙特征参数提取。其中路面横断面曲 线提取由光心提取、光心连接和光心曲线平滑实现; 2015年,张磊[7]通过图像去噪以及准确地提取出光条 中心坐标来实现图像处理,采用最小二乘法解二维成 像方程来进行系统标定。

激光检测主要用于检测路面构造深度[8],路面表

面纹理以预测沥青路面性能^[9]。然而,目前诸多的研究都没有涉及对车辙表面纹理特征的研究,随着基于激光的 3D 相机技术的发展和精度的提升,研究对象不断精细化,为探究车辙表面纹理提供了理论支持,对车辙表面纹理的检测有助于路面养护决策^[10-11]。该文采用精度为 1 mm 的激光深度相机对车辙的表面纹理特征进行探究,并设计对照试验与原始路面进行对比,观测车辙在细观结构的变化,为进一步精细化研究车辙提供理论依据。

1 数据采集方法与流程

1.1 试验设备

采用 Ranger3 高速 3D 相机,通过激光束三角测量法测量物体 3D 形状,测量经过相机视域的物体,然后把测量结果发送至计算机进行再处理。可通过计算机启动与停止测量,并由编码器与光电传感器在视觉系统中予以触发。在每次测量中,3D 相机沿着面前物体的剖面进行测量。测量结果是轮廓图,其中包括沿着剖面每个测量点的数值——例如沿着宽度的物体高度。若要使相机测量整个物体,则应移动物体(或是相机与光源),使相机能沿着物体实施一系列测量。此类测量的结果是一系列轮廓图,其中每份包含沿着输送方向的特定位置剖面测量。

1.2 试验过程

(1) 制作车辙板试件(300 mm×300 mm),并在

其上方进行小型加速加载试验。

- (2) 对试验完毕的车辙板进行扫描。摄像头由吸盘固定住,线激光发射器由支架固定并垂直向下,二者保持不动,车辙板在移动平台的带动下与摄像头进行相对运动。
- (3) 数据标定。对采集的试件采用锯齿标定法进行标定。通过单锯齿的齿宽和齿高标定轮廓的 *x* 方向和 *z* 方向的值, *y* 方向的值通过编码器或者内部时钟获得。标定后的数据在软件中进行模型重构。
- (4)数据切割。将每块车辙板通过标记点进行区域分割,将一块车辙板分成多个分区,对是否为车辙面贴上标签。

1.3 数据预处理

使用的数据处理软件为 Matlab,将点云数据读入后,需要进行以下预处理:

- (1)数据网格化:原始点云是离散的,无法进行有效的矩阵运算。因此,该文根据切割的数据样本大小,划分了1260×760个以0.1 mm为间隔的网格,并通过插值的方法填充网格数值。
- (2) 数据降噪:由于路面纹理的深陷点会受到遮挡,因此在一些凹槽处会出现数据缺失或异常的现象。该文采用二维中值滤波对数据进行降噪,将每一点的z值设置为该点某邻域窗口内的所有z值的中值。

2 表面特征纹理参数

选用平均构造深度 MPD 以及纹理的功能和体积 参数对路面表面特征进行描述。

2.1 平均构造深度 MPD

平均构造深度 MPD 是最为广泛使用的路面纹理参数之一。将获取的路面断面轮廓曲线均分为 100 mm的曲线,计算每段曲线的断面深度,把所有断面深度平均值称之为平均断面深度。其计算方法如图 1 所示。

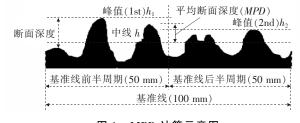


图 1 MPD 计算示意图

2.2 功能参数

由于车辙存在集料压缩的情况,因此,体积参数可一定程度反映压缩的情况。体积参数是通过负载轮廓计算得出的参数。负载面积率是指某个高度 h 以上的区域面积与全体的比例。沿着负载轮廓从负载面积率 0%起,取负载面积率的差为 40%的负载轮廓割线,割线斜率最平缓的位置叫做负载轮廓的中央部分。与纵轴方向偏差的平方和最小的直线叫做等价直线。从测量表面的定义区域中,去除等价直线负载面积率 0~100%高度范围区域之外的部分后的表面叫做中心部。从中心部向上突出的部分叫做突出峰部,下陷的部分叫做突出谷部。中心部、突出峰部、突出谷部的定义如图 2 所示。

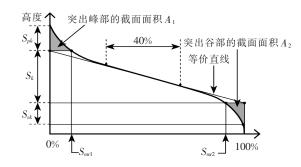


图 2 中心部、突出峰部、突出谷部示意图

利用 Matlab 进行计算,首先根据已有的三维坐标数据绘制出负载轮廓,为实现计算的便捷,考虑到利用 3D 相机扫描的优势——数据的充沛性(每 76 mm× 126 mm 有 60 余万个坐标点),将负载面积率这一比率转化为坐标点个数的比例。

得到负载面积率一高度曲线之后,根据等价直线的定义,寻找曲线上割线斜率最平缓的位置(中心部分),相对于中心部分的直线即为等价直线。最后,利用负载轮廓与等价直线,按照表 1 参数的定义计算各项功能参数。

2.3 体积参数

体积参数是使用负载轮廓计算出的与体积、容积有关的参数。各项体积参数可转化为负载面积率一高度曲线图中对应部分的面积,如图 3 所示。定义中实体体积与空隙体积均为每单位面积的体积,即为体积与总面积之比,而体积为高度与对应面积的乘积,面积负载率为区域面积即对应面积与总面积的比值,不难得出体积参数为高度与负载面积率的乘积。则实体体积或空隙容积即为负载轮廓曲线图的面积,利用 Matlab 进行积分等计算得出。体积参数的定义如表 2 所示。

表 1 功能参数定义

 参数	名称	说明				
S_k	中心部的水平差	指中心部的最大高度减去最小高度的值,由等价直线负载面积率0%与100%的高度差计算得出				
S_{pk}	突出峰部高度	表示突出峰部的平均高度				
S_{vk}	突出谷部高度	表示突出谷部的平均深度				
$S_{\it mr1}$	分离突出峰部与中心部的 负载面积率	S_{mr1} 及 S_{mr2} 各表示中心部上部高度与负载轮廓交点的负载面积率、中心部下部高度与负载轮廓交点的负载面				
$S_{\it mr2}$	分离突出谷部与中心部 的负载面积率	贝敦 国然华、中心部下部何及与贝敦北外交点的贝敦国 积率				
S_{xp}	极点高度	负载面积率 p 与负载面积率 q 之间的差值				

图 3 体积参数示意图

在使用体积参数时,必须指定分离中心部与突出峰部的负载面积率 (S_{mr1}) 、分离中心部与突出谷部的负载面积率 (S_{mr2}) 。但通过功能参数已经计算出 S_{mr1} 与 S_{mr2} 的具体数值,因此直接利用计算功能参数得出的 S_{mr1} 与 S_{mr2} 进行体积参数的计算。

3 结果分析

试验选取了4块不同级配的车辙板进行试验,每块车辙板分为3个区域,区域1、2为没有车辙的路面,

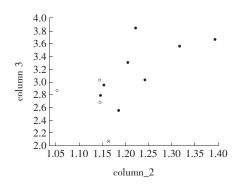
表 2 体积参数定义

 参数	名称	
\overline{V}_{vv}	谷部的空隙容积	表示负载面积率 $p\%$ 的谷 部的空隙容积
V_{vc}	峰部的实体体积	表示负载面积率 $p\%$ 的实体体积
V_{mp}	中心部的空隙容积	表示负载面积率 $p\%$ 的空隙容积与负载面积率 $q\%$ 的空隙容积的差分
$V_{\it mc}$	中心部的实体体积	表示负载面积率 $q\%$ 的实体体积与负载面积率 $p\%$ 的实体体积的差分

即原始路面。区域 3 为有车辙的路面。MPD 和功能参数及体积参数的计算结果如表 3 所示。MPD 的计算结果显示:无车辙的 MPD 比有车辙的数值较小。而对于功能参数, S_k 、 S_{pk} 和 S_{xp} 没有表现出统一的规律,而有车辙的 S_{vk} 值普遍小于无车辙的值。体积参数的计算结果显示:有车辙的 V_{vv} 值明显小于无车辙值,而其他参数并无明显规律。

表 3 MPD 和功能参数及体积参数的计算结果

车辙 板	区域	是否 车辙	功能参数				体积参数				
			MPD	S_k	S_{pk}	S_{vk}	S_{xp}	V_{vv}	V_{vc}	V_{mp}	$V_{\it mc}$
	1	否	1.242 3	2.667 2	2.044 8	3.038 0	2.015 0	0.079 1	1.393 1	0.042 0	1.319 4
1	2	否	1.394 0	3.088 2	2.036 9	3.664 9	2.109 6	0.0797	1.572 5	0.033 9	1.504 0
	3	是	1.1633	2.7628	2.279 4	2.062 7	2.060 4	0.014 6	1.293 3	0.058 6	1.477 6
	1	否	1.739 7	3.097 5	1.796 0	5.799 3	2.223 3	0.169 9	1.6018	0.037 6	1.468 4
2	2	否	2.096 0	3.427 0	2.239 8	7.315 9	2.056 7	0.255 2	1.883 1	0.015 2	1.587 5
	3	是	1.627 6	3.1627	2.558 3	5.081 6	2.246 1	0.126 8	1.626 3	0.038 0	1.475 5
	1	否	1.221 9	3.088 4	1.635 8	3.841 8	1.541 9	0.135 5	1.683 7	0.002 7	1.400 0
3	2	否	1.185 4	3.654 6	2.373 6	2.549 8	2.038 3	0.027 3	1.860 9	0.016 2	1.791 1
	3	是	1.145 0	2.950 1	1.619 2	2.6816	2.153 7	0.021 4	1.284 9	0.089 9	1.658 5


续表3

车辙	区域	是否 车辙	功能参数				体积参数				
板			MPD	S_k	S_{pk}	S_{vk}	S_{xp}	V_{vv}	V_{vc}	V_{mp}	$V_{\it mc}$
	1	否	1.205 0	1.847 5	3.418 5	3.302 9	1.527 1	0.074 2	0.955 5	0.049 1	0.911 0
4	2	否	1.317 7	2.7798	2.308 8	3.560 0	2.397 6	0.048 8	1.345 8	0.079 0	1.394 3
	3	是	1.052 3	3.488 4	1.314 1	2.855 3	2.123 0	0.032 1	1.807 1	0.020 9	1.680 6

由表 3 可以看出能较好地区别有无车辙的表面特征参数为 MPD、 S_{wk} 和 V_{vv} ,均是有车辙的比无车辙的小。而其他参数并不能很好地看出有无车辙的差别。

4 车辙预测模型

根据上述分析,选取了 $MPD \setminus S_{vk}$ 和 V_{vv} 作为参

数建立车辙的判断模型,将有车辙的设为标签 1,无车辙的设为标签 2,通过支持向量机(SVM)对车辙进行预估,利用 5 折交叉检验的方法计算车辙判断的准确度为 91.7%, AUC 值为 0.81。图 4 为 SVM 分类器的结果,其中•代表预测正确,×代表预测失败(由于试验数据较少,在之后的研究中需补充更多的试验数值以验证其准确率)。



图 4 SVM 预测结果

5 结语

通过试验模拟车辙的形成过程,计算车辙的表面 纹理特征参数,与无车辙的结果进行数值对比。经计算结果分析,平均构造深度 MPD、突出谷部高度 S_{vt} 、谷部的空隙容积 V_{vv} 能较好地区分有无车辙,有车辙的 MPD、 S_{vt} 和 V_{vv} 数值均小于无车辙。利用这三者为主要参数建立 SVM 的车辙判断预估模型,判断准确率可达 91.7%。

参考文献:

- [1] 李清泉,雷波,毛庆洲,等.利用激光三角法进行快速车辙 检测[J]. 武汉大学学报(信息科学版),2010,35(3): 302-307.
- [2] 汪恩军,陈先桥,初秀民,等.车辙检测中超声测距数据采集方法[J].武汉理工大学学报,2008,32(1):138-141.
- [3] 马荣贵. 路面三维检测系统原理及方法研究[D]. 西安:长

安大学,2008.

- [4] 李甜甜. 基于三维线激光技术的路面车辙检测技术研究 [D]. 西安: 长安大学, 2016.
- [5] 司永伟.集成式多点激光路面车辙检测技术研究[D]. 西安:长安大学,2018.
- [6] 李莉,孙立军,谭生光,等.用于路面车辙检测的线结构光图像处理流程[J].同济大学学报(自然科学版),2013,41 (5),710-715.
- [7] 张磊.基于线激光的道路车辙检测方法研究[D].西安:长安大学,2015.
- [8] 李伟,孙朝云,呼延菊,等. 基于激光 3D 数据的沥青路面构造深度检测方法[J],中外公路,2016,36(5):9-12.
- [9] 敬超,张金喜. 沥青路面性能预测研究综述[J]. 中外公路,2017,37(5):31-35.
- [10] 陈文,黄能,何若夫,等.基于寿命周期分析的项目级路 面养护决策应用研究[J].中外公路,2019,39(5):64-
- [11] 钟彪. 沥青混凝土路面预防性养护措施决策与应用[J]. 中外公路,2018,38(6):58-62.