DOI:10.14048/j.issn.1671-2579.2020.06.043

一座飞燕式系杆拱桥的有限元模型修正

王生武¹,李泽东¹,任伟新²*

(1. 大连交通大学 土木学院, 辽宁 大连 116028; 2. 合肥工业大学 土木与水利工程学院)

摘要:以一座飞燕式系杆拱桥为工程背景,基于该桥静动载试验数据,对大桥初始有限元 模型展开了修正。首先,以实测索力为目标值,采用一种迭代法对有限元模型的吊杆索力进 行修正,修正后的计算值与实测值误差在 3%以内;其次,基于响应面方法,联合运用静动载 试验数据进行有限元模型修正,修正后的有限元模型静动力特性与试验结果吻合较好;最后, 用两种荷载试验工况对修正效果进行了检验,除了个别测点挠度误差增大外,其余测点的挠 度误差均有明显的减小,理论计算值与实测值更加接近。上述结果表明:该桥有限元模型修 正结果具有可接受的精度,修正后的有限元模型能更准确地反映该桥实际力学性能。

关键词:桥梁工程;飞燕式系杆拱桥;有限元模型修正;吊杆力;响应面方法

1 引言

对结构进行分析和评价,建立一个满足工程精度、 反映结构力学特性的有限元模型是必不可少的前提。 但是,依据设计图纸建立的初始有限元模型由于模型 结构误差、模型阶次误差及参数设置误差等往往不能 反映实际结构的真实状态,因此需要对建立的有限元 模型进行修正。有限元模型修正是一个通过识别或修 正有限元分析模型中的参数,使得有限元计算结果与 实际测试结果尽可能接近的过程。

有限元模型修正依据修正利用的测试信息不同, 可以分为3类:基于静力的有限元模型修正、基于动力 的有限元模型修正、联合静动力的有限元模型修正。

钟颖以南阳市瑞河桥静载试验位移测试结果为修 正目标值,对该桥进行了有限元模型修正。单纯的基 于静力的有限元模型修正存在一定的不足,体现在静 载试验荷载工况的有限性,可能会使模型修正的结果 不能全面反映结构的整体特性;任伟新基于环境振动 试验,采集到了青洲斜拉桥的前 12 阶振动频率,并以 实测频率值为动力响应目标,通过研究建模过程中的 一些关键问题,建立了该桥的基准动力有限元模型;张 启伟基于江阴长江大桥环境振动测试所得的频率值, 采用二次规划算法对初始有限元模型进行了修正,修 正后模型的动力特性更加接近于实测值。基于动力的 有限元模型修正常选择频率作为修正目标,在实际测 取结构频率中,高阶频率可能会出现漏频现象,这会导 致高阶频率的精度受到影响,因此单纯基于动力的有 限元模型修正也存在一定的局限性。联合静动力的有 限元模型修正方法将静力和动力的测试信息结合在一 起构造目标函数,兼顾了结构的整体和局部特征,从而 增大了参数识别结果的有效性和可靠性。宗周红提出 了一种联合动力模态柔度和静力位移的有限元模型修 正方法,将此方法运用到一座加固后的刚架拱桥,修正 结果表明这种联合静、动力的有限元模型修正方法具 有较好的修正效果;岳笛基于重庆石板坡长江大桥复 线桥静动载试验数据,对该桥初始有限元模型进行了 修正。

无论是单纯的基于静力或者动力的有限元模型修 正,还是联合静动力的有限元模型修正方法都是直接 基于结构有限元模型的修正,这种直接基于结构有限 元模型的修正方法有一个较大的缺陷,即每计算一次 就需要调用有限元模型一次,模型修正所需的时间较 长,计算量大,不利于工程的实际运用。响应面方法作 为一种函数逼近的工具,可以将特征量与设计参数之 间复杂的隐式关系用显示函数式近似表达出来。利用 响应面方法进行有限元模型修正可以显著提高计算效 率,避免大量的结构有限元计算。魏锦辉以常德市白

收稿日期:2020-11-25(修改稿)

作者简介:王生武,男,博士,教授.E-mail:653053478@qq.com

*通信作者:任伟新,男,博士,教授.E-mail:renwx@hfut.edu.cn

马湖公园虹桥为工程背景,基于响应面方法对该桥进 行了有限元模型修正,修正结果表明:基于响应面的有 限元模型修正方法可以使实测值与计算值达到较好的 吻合程度;周林仁、欧进萍对某三塔四跨半漂浮体系斜 拉桥展开了有限元模型修正,建立了待修正参数和特 征量关系的径向基函数响应面模型。

基于此,该文以阜阳市颍河大桥主桥为工程背景, 基于实测得到的成桥索力与静动载试验数据,对依据 设计图纸建立的该桥初始有限元模型进行修正。

2 工程简介

安徽省阜阳市向阳路颍河大桥主桥为三跨飞燕式 系杆拱桥,跨径布置为(47+148+47)m。拱圈为双 片钢箱拱,拱圈截面为矩形钢箱结构,拱圈轴线为二次 抛物线,矢跨比为1:4,矢高为37m。拱脚位置处主 肢上、下缘线为二次抛物线与圆弧线的组合线形。靠 近中墩的1/4拱处,副肢采用半径220m的反弯圆弧 对主拱圈进行过渡,顺接至边跨主梁内。拱圈分叉处 及主、副肢与主梁结合处局部用小半径圆弧线过渡。 桥面系采用正交异性钢桥面板结构;主跨横梁采用整 板式横隔板,纵梁采用刚性与柔性组合系杆作为主受 力结构承受拱圈的水平推力,钢纵梁梁高2.5m。边 跨采用钢箱梁结构,中墩处梁高5.5m,采用二次抛物 线往边墩过渡至2.5m梁高。吊杆采用15¢15mm 环氧无黏结钢绞线整束挤压式吊杆体系。桥型总体布 置如图1所示。

3 建立初始有限元模型

采用梁格法建立颍河大桥主桥初始有限元模型。 吊杆、系杆采用 Link10 单元,横梁、纵梁、拱肋构件采 用 Beam188 单元模拟。吊杆、系杆的预应力效应通过 初应变方式施加。边拱、主拱采用耦合自由度的方式 进行约束,边界条件依据实际施工图纸设置。最终建 立的三维有限元模型如图 2 所示,共计 1 957 个节点, 2 950 个单元。

4 吊杆力的修正

全桥共 21 对吊杆,共计 42 根,上游吊杆编号为 1 ~21,下游吊杆编号为 22~42。建立初始有限元模型 后,在自重工况作用下,发现施加到吊杆上的力与实测 索力误差较大(表 1)。由表 1 可知:最大误差出现在 下游 24 号吊杆,误差达到 34.39%。

该文采用一种迭代法的思想修正吊杆力:① 将实 测索力值换算成施加在有限元模型上的初应变值;② 将初始有限元计算得到的初应变提取出来,与实测索 力换算得到的初应变进行比较,计算二者之间的差值, 将差值加到有限元计算得到的初应变值上继续迭代, 直到所有吊杆力值与实测吊杆力值之间的误差在一定 范围内才停止迭代,该文拟定误差在3%内停止迭代。

$$\epsilon_0 = \frac{F_i - F_0}{EA} + \epsilon_0 \tag{1}$$

式中: ε。为每一步迭代前的初应变; F_i为吊杆索力实测值; F。为第 i 次迭代后吊杆的张拉力; E 为吊杆的 弹性模量; A 为吊杆的横截面积。

基于实测成桥索力,运用该方法对吊杆力进行修 正。由表1可知:修正后的吊杆力与实测吊杆力更接 近,所有吊杆力的误差均在3%以内。最大误差出现 在下游35号吊杆,误差仅为2.3%。表明修正过吊杆 力后的有限元模型更接近结构真实受力状态。

5 基于静动力响应面的修正

通过该桥动载试验,得到该桥前两阶的竖向振动 频率。修正吊杆力后的有限元模型竖向前两阶频率与 实测频率对比如表2所示。

从表 2 可知:理论分析得到的第 2 阶竖向频率与 实测结果接近,但是第 1 阶竖向频率的实测结果与理 论分析结果误差较大,达到了 14.64%,1 阶频率理论 计算的精度非常重要,比如在计算冲击系数时选取的

吊杆 编号	实测 索力/ kN	初始计 算索 力/kN	修正后 索力/ kN	初始 误差/ %	修正 后误 差/%	吊杆 编号	实测 索力/ kN	初始计 算索 力/kN	修正后 索力/ kN	初始 误差/ %	修正 后误 差/%
1	740.5	611.3	736.4	-17.45	-0.55	22	733.2	610.17	728.93	-16.78	-0.58
2	827.6	677.9	821.1	-18.09	-0.78	23	871.3	676.90	864.57	-22.31	-0.77
3	878.0	595.6	869.5	-32.16	-0.96	24	908.2	595.83	899.39	-34.39	-0.97
4	954.6	655.4	944.2	-31.34	-1.09	25	976.8	656.55	966.01	-32.79	-1.10
5	929.9	682.7	917.9	-26.58	-1.29	26	968.4	684.83	955.92	-29.28	-1.29
6	868.6	673.2	855.2	-22.49	-1.54	27	877.6	675.87	863.68	-22.99	-1.59
7	864.1	700.6	849.6	-18.92	-1.68	28	924.3	703.19	909.19	-23.92	-1.63
8	738.2	562.1	722.7	-23.85	-2.09	29	765.9	564.21	749.86	-26.33	-2.09
9	770.4	605.2	754.3	-21.44	-2.09	30	749.9	606.98	733.18	-19.06	-2.23
10	908.8	712.9	892.3	-21.56	-1.82	31	839.1	712.43	821.97	-15.10	-2.04
11	917.8	725.2	901.2	-20.99	-1.81	32	883.8	725.60	866.53	-17.90	-1.95
12	857.6	712.6	841.1	-16.91	-1.93	33	881.8	711.49	864.67	-19.31	-1.94
13	728.8	604.7	712.7	-17.03	-2.21	34	793.0	601.67	776.28	-24.13	-2.11
14	719.8	561.6	704.3	-21.98	-2.15	35	698.6	557.10	682.55	-20.25	-2.30
15	874.9	700.6	860.3	-19.92	-1.66	36	885.9	696.83	870.79	-21.34	-1.71
16	832.9	673.8	819.5	-19.10	-1.61	37	841.6	671.96	827.68	-20.16	-1.65
17	883.4	683.7	871.4	-22.61	-1.36	38	929.3	683.44	916.82	-26.46	-1.34
18	904.4	656.0	894.0	-27.46	-1.15	39	964.8	656.57	954.00	-31.95	-1.12
19	877.6	595.6	869.1	-32.13	-0.97	40	895.1	596.26	886.29	-33.39	-0.98
20	837.8	678.1	831.3	-19.06	-0.77	41	839.5	679.16	832.76	-19.10	-0.80
21	753.2	613.0	749.1	-18.62	-0.54	42	766.1	613.92	761.82	-19.86	-0.56

表1 计算索力与实测索力对比

注:初始误差=(初始计算索力-实测索力)/实测索力;修正后误差=(修正后索力-实测索力)/实测索力。

竖向振动 阶次/阶	①实测频率/ Hz	②理论频率/ Hz	误差= (②一①)/①
1	1.953	1.667	-14.64
2	3.359	3.360	0.03

表 2 实测频率与理论频率的比较

就是1阶频率,所以有必要对当前的有限元模型进行 修正,使得建立的有限元模型动力特性更符合结构真 实情况。

静载试验荷载工况1车辆加载位置如图3所示。 由于测点较多,选取中跨测点的挠度值与有限元模型 计算理论值进行比较。中跨测点布置在L/8、L/4、 3L/8、L/2、5L/8、3L/4、7L/8处,每个截面布置3个 测点,左侧桥面测点编号为f1-4、f1-5、…、f110,中心桥面上测点依次编号为 *f*2-4、*f*2-5、…、*f*2-10,右侧桥面上测点依次编号为 *f*3-4、*f*3-5、…、 *f*3-10。

图 3 工况 1 车辆加载平面图 (单位:mm)

静载试验工况1测点的挠度实测值与有限元模型 计算值对比如表3所示。变形竖直向上规定为"+", 变形竖直向下规定为"-"。

表 3 工况 1 测点挠度计算值与实测值对比

测上炉旦	①实测值/	②计算值/	误差=
侧点细亏	mm	mm	(2-1)/1
f1-4	-0.87	-0.05	-94.25
$f_{1}-5$	-4.49	-5.18	15.37
f 1 - 6	-15.46	-17.11	10.67
f1-7	-18.18	-24.99	37.46
f_{1-8}	-14.98	-16.84	12.42
$f_{1}-9$	-5.54	-4.57	-17.51
f1 - 10	-0.76	0.18	-123.68
f2-4	-0.58	-0.16	-72.41
f2-5	-6.17	-5.92	-4.05
f2-6	-14.38	-21.09	46.66
f2-7	-26.07	-32.50	24.66
f2-8	-11.24	-21.08	87.54
f2 - 9	-5.11	-5.77	12.92
f2 - 10	-0.64	-0.09	-85.94
$f_{3}-4$	-0.83	0.06	-107.23
$f_{3}-5$	-6.11	-4.85	-20.62
$f_{3}-6$	-9.78	-17.10	74.85
$f_{3}-7$	-18.73	-25.13	34.17
f3-8	-8.38	-16.99	102.74
$f_{3} - 9$	-3.78	-4.67	23.54
$f_{3} - 10$	-0.69	0.14	-120.29

从表3可以看出:测点的理论挠度值与实测挠度 值误差较大,此时的有限元模型还不能较好地反映结 构的静力特性,所以有必要进行有限元模型修正,旨在 减小计算值与实测值之间的误差,使得最终的有限元 模型相对"有效"和"准确"。

该文基于响应面方法对结构进行有限元模型修 正,该过程涉及响应特征量的选取。结合颍河大桥主 桥荷载试验结果,选择竖向前两阶频率作为动力特性 特征响应量,考虑到桥梁结构跨中截面常常是分析验 算的重点,所以选择跨中截面的 *f*1-7、*f*2-7、*f*3-7 测点作为静力特性特征响应量。

5.1 试验设计

选择吊杆弹性模型(E_1)、吊杆密度(D_1)、边拱弹 性模量(E_2)、边拱密度(D_2)、主拱弹性模量(E_3)、主 拱密度(D_3)、主梁弹性模量(E_4)、主梁密度(D_4)、横 梁弹性模量(E_5)为待修正参数,根据工程经验及相关 研究结果,设定参数变化范围为 20%,具体参见表 4。

由于待修正参数较多,采用 D-最优试验设计方 法进行试验设计,试验次数为 65次,试验方案见表 5, 试验设计采用 Minitab 软件。

将各组数据代入有限元模型中求得响应样本值, 结果如表 6 所示。

表 4 待修正参数变化范围

	而日	$E_{1}/$	$E_{2}/$	$E_{3}/$	$E_{4}/$	$E_{{\scriptscriptstyle 5}}/$	$D_{1}/$	D_2 /	D_{3} /	$D_{4}/$
	- 火日	GPa	GPa	GPa	GPa	GPa	$(kg \cdot m^{-3})$	$(kg \cdot m^{-3})$	$(kg \cdot m^{-3})$	$(\text{kg} \cdot \text{m}^{-3})$
	最小值	156	165	165	165	165	6 280. 0	6 158.4	6 158.4	6 158.4
	初始值	195	206	206	206	206	7 850.0	7 698.0	7 698.0	7 698.0
	最大值	234	247	247	247	247	9 420.0	9 237.6	9 237.6	9 237.6

表 5 D-最优试验设计方案

皮口	$E_{1}/$	$D_{1}/$	E_{2} /	D_{2} /	$E_{\scriptscriptstyle 3}$ /	D_{3} /	$E_{_4}/$	$D_{4}/$	$E_{{\scriptscriptstyle 5}}/$
厅丂	GPa	$(kg \cdot m^{-3})$	GPa	$(\text{kg} \cdot \text{m}^{-3})$	GPa	$(\text{kg} \cdot \text{m}^{-3})$	GPa	$(kg \cdot m^{-3})$	GPa
1	195	7 850	206	7 698	206	7 698	206	12 877	206
2	195	7 850	206	7 698	68	7 698	206	7 698	206
3	195	2 569	206	7 698	206	7 698	206	7 698	206
4	195	7 850	206	7 698	206	12 877	206	7 698	206
		•••		•••		•••		•••	
	•••	•••		•••		•••		•••	
61	156	6 280	165	6 158	165	9 238	247	6 158	165
62	195	7 850	344	7 698	206	7 698	206	7 698	206
63	156	9 420	247	9 238	165	6 158	247	9 238	247
64	234	6 280	165	9 238	247	9 238	247	6 158	247
65	195	7 850	206	7 698	206	7 698	206	7 698	344

表 6 数值计算的响应样本数据

一 一 一	1阶频	2 阶频	以下测点响应值/mm					
厅丂	率/Hz	率/Hz	f1-7	f2-7	f3-7			
1	1.418	2.840	26.07	35.14	26.06			
2	1.326	2.697	37.27	46.16	37.24			
3	1.669	3.362	26.07	35.14	26.06			
4	1.642	3.286	26.07	35.14	26.06			
			•••					
61	1.655	3.043	28.36	38.97	28.35			
62	1.675	3.385	25.76	34.84	25.74			
63	1.521	3.340	28.05	35.51	28.04			
64	1.914	3.232	22.03	29.59	22.02			
65	1.710	3.486	25.91	31.62	25.90			

5.2 显著性分析

显著性分析的目的在于将各响应量影响显著的参数筛选出来,用这些影响显著的参数去构建响应面模型,可以减小计算量,提高响应面模型的精度。该文运用F检验法对各自变量进行显著性检验,显著性水平设置为 0.05。若 $P \leq 0.05$,则认为该参数对某响应量影响显著。

对各响应量影响显著的参数,如表7所示。

表 7 各响应量的显著参数

响应	显著影响参数
1阶频率	E_1 , E_3 , E_4 , E_5 , D_4 , $E_1 \times E_1$, $E_3 \times E_3$, $E_4 \times E_4$
2阶频率	E_{3} , E_{4} , D_{4}
f 1 - 7	E_1 , E_3 , E_4 , E_1 \times E_1 , E_3 \times E_3 , E_4 \times E_4
f2-7	E_1 , E_3 , E_4 , E_5 , $E_1 \times E_1$, $E_3 \times E_3$, $E_4 \times E_4$, $E_5 \times E_5$
f3-7	E_1 , E_3 , E_4 , E_1 × E_1 , E_3 × E_3

从表 7 可以看出:显著性影响参数主要来自参数 的主效应和二次效应,交叉项对模型的显著性影响较 参数的主效应和二次项效应明显小得多。在响应面模 型拟合过程中应保留显著的影响参数,其余参数予以 剔除。

5.3 响应面函数拟合

用于桥梁工程的响应面模型常使用 2 阶多项式模型,其数学表达式为:

$$y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_i \sum_j \beta_{ij} x_i x_j + \sum_{i=1}^{k} \beta_i x_i^2$$
(2)

式中: β_0 、 β_i 和 β_{ij} 为待定系数; x_i 、 x_j 为设计变量。

选取显著性高的参数构建响应面模型。得到结构 响应与参数之间的显式表达式如下:

 $f1 = 1.67175 + 0.05526E_1 + 0.05517E_3 + 0.04475E_4 - 0.08604D_4 + 0.02362E_5 - 0.01133E_1 \times E_1 - 0.00996E_3 \times E_3 - 0.00779E_4 \times E_4$ (3)

 $f2=3.266\ 4+0.106\ 9E_3+0.106\ 5E_4-0.195\ 4D_4$

(4)

 $f1 - 7 = 25.658 - 2.352 \ 3E_1 - 1.570 \ 7E_3 - 1.994 \ 9E_4 + 0.637 \ 6E_1 \times E_1 + 0.394 \ 1E_3 \times E_3 + 0.373 \ 7E_4 \times_4$ (5)

 $f2-7=34.510-2.304E_{1}-1.538E_{3}-2.276E_{4}$ -1.967E₅+0.6461E₁ × E₁+0.4048E₃ × E₃+ 0.4132E_{4}×E_{4}+0.5113E_{5}×E_{5}(6)

 $f_{3}-7 = 26.183 - 2.394E_{1} - 1.611E_{3} - 1.954E_{4} + 0.5727E_{1} \times E_{1} + 0.3292E_{3} \times E_{3}$ (7)

回归后的典型响应面模型如图 4、5 所示。

图 4 f1 与参数 E_1 、 E_3 的响应面模型

图 5 f1 与参数 E1、E4 的响应面模型

5.4 响应面模型精度检验

响应面模型的回归精度常用相关系数平方和 R² 去判断。由回归分析中的平方和分解公式可知:

 $SS_T = SS_M + SS_{\varepsilon} \tag{8}$

式中:SS_T为样本数据总的偏差平方和;SS_M为回归 平方和;SS_e为误差平方和。

$$R^{2} = \frac{SS_{M}}{SS_{T}}$$
(9)

*R*² 值为 0~1, 且越接近 1 说明试验结果越理想。 根据式(9)得到的 *R*² 值如表 8 所示。

表 8 各个响应面模型的 R² 值

1阶频率	2阶频率	f1-7	f2-7	$f_{3}-7$
0.953 4	0.426 7	0.960 5	0.960 6	0.927 3

从表 8 可知: 拟合得到的竖向 2 阶频率响应面模 型精度不满足要求, 即 2 阶频率的响应面模型不能用 于后续的联合各响应面模型的优化。其余 4 个响应面 模型的 R² 均接近 1, 说明其拟合得到的响应面模型精 度满足要求, 能够较好地反映实际特征量与各参数之 间的关系。

5.5 联合各响应面优化

利用 Minitab 软件对竖向 1 阶频率、f1-7、f2-7、f3-7 响应量进行联合响应面优化,最终得到如图 6 所示优化图。

图 6 联合各响应面模型优化图

图 6 揭示了多参数因子对多响应量的影响和预测 规律。以各响应量的实测值为目标值,优化图提供了 各参数因子的最优设置。优化的效果通过复合合意性 去表示,一般复合合意性越接近 1,优化效果越好,为 此,在试验优化阶段需要最大化复合合意性。图 6 显 示该次优化复合合意性为 0.907 7,效果较理想。修正 后的各参数取值如表 9 所示。

表 9 待修正参数取值

$E_{1}/$	$E_{3}/$	$E_{4}/$	D_{4} /	$E_{5}/$
GPa	GPa	GPa	$(kg \cdot m^{-3})$	GPa
234	247	247	6 458.4	247

将表 9 取值代入到有限元模型中,对修正前后的 特征响应量进行对比,结果如表 10 所示。虽然 2 阶频 率的响应面模型由于精度不满足要求,在联合响应面 模型优化时予以了舍弃,但这里为了比较模型的修正 效果,也将其修正前后响应值列于表 10 中。

从表 10 可以看出:修正后的 1 阶频率值更接近实 测值,误差由 14%左右降到了 2%左右,2 阶频率误差 有所增大,f1-7、f2-7、f3-7 测点的挠度计算值与 实测值误差均有明显减小,均控制在 20%以内,这对 于大型桥梁结构来说,误差在可以接受的范围内。可 以说,经过修正后的有限元模型静动力特性与实测静 动力特性更加吻合。

5.6 修正效果检验

荷载试验工况1作用下测点挠度值的修正效果如 表11所示。

脑片齿	实测值	初始值	修正后值	[初始误差=	[修正后误差=
啊应祖	1	2	3	(2-1)/1]/%	(3-1)/1]/%
竖向1阶	1.953 Hz	1.667 Hz	1.909 Hz	-14.64	-2.25
竖向2阶	3.359 Hz	3.360 Hz	3.241 Hz	0.03	-3.51
f 1 - 7	-18.18 mm	-24.99 mm	-21.58 mm	37.46	18.70
f2-7	-26.07 mm	-32.50 mm	-27.87 mm	24.66	6.90
$f_{3}-7$	-18.73 mm	-25.13 mm	-21.72 mm	34.17	15.96

表 11 工况 1 测点挠度修正前后对比

测占定旦	①实测值/	②初始值/	③修正	[初始误差=	[修正后误差=
侧鼠痈与	mm	mm	后值/mm	(2-1)/1]/1	(3-1)/1]/5
f1-4	-0.87	-0.05	0.02	-94.25	-102.30
f1-5	-4.49	-5.18	-4.42	15.37	-1.56
f 1 - 6	-15.46	-17.11	-14.73	10.67	-4.72
f_{1-7}	-18.18	-24.99	-21.58	37.46	18.70

11	+	-1	-
25	去	- I	
~	12	1	J

测点编号	①实测值/	②初始值/	③修正	[初始误差=	[修正后误差=
	mm	mm	后值/mm	(2-1)/1]/%	(3-1)/1]/5
f1-8	-14.98	-16.84	-14.53	12.42	-3.00
f1 - 9	-5.54	-4.57	-3.94	-17.51	-28.88
f1 - 10	-0.76	0.18	0.16	-123.68	-121.05
f2-4	-0.58	-0.16	-0.11	-72.41	-81.03
f2-5	-6.17	-5.92	-5.11	-4.05	-17.18
f2-6	-14.38	-21.09	-18.06	46.66	25.59
$f_{2}-7$	-26.07	-32.50	-27.87	24.66	6.90
f2-8	-11.24	-21.08	-18.08	87.54	60.85
f2 - 9	-5.11	-5.77	-4.97	12.92	-2.74
f2 - 10	-0.64	-0.09	-0.08	-85.94	- 87.50
$f_{3}-4$	-0.83	0.06	0.09	-107.23	-110.84
$f_{3}-5$	-6.11	-4.85	-4.08	-20.62	-33.22
$f_{3}-6$	-9.78	-17.10	-14.72	74.85	50.51
$f_{3}-7$	-18 . 73	-25.13	-21.72	34.17	15.96
f3-8	-8.38	-16.99	-14.68	102.74	75.18
$f_3 - 9$	-3.78	-4.67	-4.05	23.54	7.14
f3-10	-0.69	0.14	0.12	-120.29	-117.39

从表 11 可知:除了个别测点误差增大外,其余测 点的误差均有明显的减小,理论计算值与实测值更加 接近。某些点的误差数值较大是由于此处取的是相对 误差,作为分母项的实测值较小造成的,还有可能是试 验本身带来的误差。

6 结论

以阜阳市颍河大桥主桥为工程背景,基于荷载试 验实测数据,对依据设计图纸建立的初始有限元模型 进行了修正,得到了更能反映该桥真实静动力响应的 有限元模型。可得如下主要结论:

(1)初始有限元模型的吊杆力与实测吊杆力误差 较大,以实测吊杆力为目标,对吊杆索力进行了修正, 修正后的吊杆力与实测值较吻合,所有吊杆力的误差 均控制在3%以内。

(2)基于响应面方法对有限元模型进行了修正, 试验设计方法采用D-最优试验设计。修正后的结果 表明,结构的静动力响应值与实测值更加吻合。

(3)利用两种静载试验工况对修正后的有限元模型进行了验证。结果表明,除了个别测点外,大部分测点的静力响应挠度值误差均有明显的较小,说明采用

响应面方法进行有限元模型修正的整体效果较好。

参考文献:

- [1] 邓苗毅,任伟新.基于响应面方法的结构有限元模型修正 研究进展[J].铁道科学与工程学报,2008(3).
- [2] 宗周红,夏樟华.联合模态柔度和静力位移的桥梁有限元 模型修正方法[J].中国公路学报,2008(6).
- [3] 任伟新,陈华斌.基于响应面的桥梁有限元模型修正[J]. 土木工程学报,2008(12).
- [4] 宗周红,任伟新.桥梁有限元模型修正和模型确认[M]. 北京:人民交通出版社,2012.
- [5] 钟颖.基于静力测试数据的桥梁结构有限元模型修正 [D].西南交通大学硕士学位论文,2009.
- [6] 任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型[J]. 计算力学学报,2007(5).
- [7] 张启伟.基于环境振动测量值的悬索桥结构动力模型修 正[J].振动工程学报,2002(1).
- [8] 岳笛.重庆石板坡长江大桥复线桥基于静动力的模型修 正[D].重庆大学硕士学位论文,2007.
- [9] 魏锦辉,任伟新.基于响应面方法的桥梁静动力有限元模型修正[J].公路交通科技,2015(2).
- [10] 周林仁,欧进萍.基于径向基函数响应面方法的大跨度 斜拉桥有限元模型修正[J].中国铁道科学,2012(3).