DOI:10.14048/j.issn.1671-2579.2024.06.002

紧邻既有车站和钢便桥的超大异形基坑施工方案优化

陈登伟

(中铁南方投资集团有限公司,广东深圳 518060)

摘要:随着中国城市地下空间开发密度不断增加,超大基坑施工对紧邻结构正常运营的影响不容忽视。该文依托深圳 黄木岗综合交通枢纽工程,研究了超大异形基坑开挖引起围护结构和土体变形,以及紧邻既有车站变形和钢便桥的结 构响应,并对该异形基坑开挖施工方案进行优化。结果表明:基坑南北侧围护结构的变形趋势整体一致,但北侧阳角 处变形量较大;既有车站围护结构整体发生向坑内位移,最大水平位移达9.4 mm;基坑开挖后钢箱梁桥桩的水平位移 较大,最大值达到10.5 mm。通过在负一层加设临时混凝土支撑和坑内钢便桥桥墩上增设钢套筒,保证了整体施工 安全。

Optimization of Construction Scheme of Ultra-Large Special-Shaped Foundation Pit Adjacent to Existing Station and Temporary Steel Bridge

CHEN Dengwei

(China Railway Southern Investment Group Co., Ltd., Shenzhen, Guangdong 518060, China)

Abstract: With the intensifying development density of urban underground space in China, the impact of ultralarge foundation pit construction on the normal operation of adjacent structures cannot be ignored. Relying on the Huangmugang Comprehensive Transportation Hub Project in Shenzhen, this paper studied the deformation of the envelope structure and soil caused by the excavation of the ultra-large special-shaped foundation pit, as well as the structural response of the deformation of the adjacent existing station and the temporary steel bridge. The paper optimized the construction scheme of the special-shaped foundation pit excavation. The results show that the deformation trend of the envelope structure on the north and south sides of the foundation pit is the same as a whole, but the deformation at the external corner on the north side is large. The envelope structure of the existing station as a whole is displaced into the pit, with a maximum horizontal displacement of 9.4 mm, and the horizontal displacement of the steel box girder bridge pile after excavation of the foundation pit is large, with the maximum value reaching 10.5 mm. The overall construction safety is ensured by adding temporary concrete supports on the lower ground and adding steel sleeves on the piers of the temporary steel bridge in the pit.

Keywords: ultra-large special-shaped foundation pit; foundation pit excavation; adjacent structure; numerical calculation; deformation analysis

0 引言

随着中国城市交通的快速发展,建设地下综合

交通枢纽成为解决地铁多线换乘,实现区域交通一体化发展的重要途径。交通枢纽基坑规模大、结构 形式复杂,对周围建筑物的运营安全造成很大的影

收稿日期:2024-10-23(修改稿)

作者简介:陈登伟,男,硕士,高级工程师.E-mail:dengweichencrsig@163.com

响^[1-8]。学者们对于基坑紧邻既有结构施工环境影响 开展了一系列研究,运用了理论解析^[9]、数值模拟^[10-15]、 模型试验^[16]、实时监测^[17-19]等方法。其中,有限元数 值模拟是评估临近施工对地铁影响的常用方法,可 以较好地模拟基坑施工过程各工况周围结构的变形 沉降情况,从而对特定工程设计出较合理的优化方 案,保证基坑及其周围既有结构达到安全可靠状态。 然而,目前国内外对于超大异形基坑开挖环境影响 研究较少,特别是对周围紧邻的车站、桥梁等既有建 (构)筑物正常运营的影响机制的理解不够清晰,因 此分析超大异形基坑施工对周围既有结构影响机理 意义重大。

本文结合深圳黄木岗综合交通枢纽紧邻既有车 站和钢便桥的超大异形基坑施工案例,通过 Plaxis 建 立三维有限元模型,分析超大异形基坑施工对紧邻 结构的影响,并提出改进措施对施工方案进行优化, 通过现场监测结构进行了验证。

1 工程概况

1.1 基坑方案

黄木岗综合交通枢纽工程基坑总面积约为8.6 万m²,其中包括14号线部分(1.64万m²,地下3层,深约 30m)、24号线部分(0.81万m²,地下4层,深约40m), 地下空间开发部分(1.92万m²,地下1层,深12~16m)。 14号线采用盖挖逆作施工,7号线东侧50m轨道交 通盖挖。既有7号线为地下3层车站,车站底板埋深 与14号线同为30m。既有C出入口横跨枢纽14号 线基坑,14号线基坑深约30m,局部40m。围护结构 采用地下连续墙,盖挖逆作法施工,其中新建14号线 顶板标高17.155~20.845m。笋岗西路东侧轨道交 通 50m盖挖段基坑深约16.0m,围护结构为0.8m@ 1.0m钻孔灌注桩,盖挖法施工,主体结构为单层结 构,与7号线连接长度约53.7m,开挖施工前,14号线 基坑西侧架设临时钢箱梁桥,保证施工期间区域交通 正常运行,基坑整体情况如图1所示。

图1 黄木岗综合交通枢纽基坑(单位:m)

Figure 1 Foundation pit in Huangmugang Comprehensive Transportation Hub (unit:m)

1.2 地质条件

图 2 为东西向(西区地下空间及 24 号线)地质纵 断面图,图 3 为南北向(14 号线)地质纵断面图,地层 自上而下依次为人工填土、砾质黏性土、全~微风化 燕山期花岗岩,岩土层一般物理力学指标标准值汇 总于表1。地下水位位于地表以下 5.8 m。

2 有限元模型

2.1 模型概况

为了对枢纽在复杂工况下基坑和既有隧道、钢 便桥结构的变形风险进行量化分析,选择24号线基 坑、14号线基坑、七号线既有黄木岗地铁车站和临时

图 2 东西向(西区地下空间及 24 号线)地质纵断面 Figure 2 EW-trending (west underground space and Line 24) geological profile

图3 南北向(14号线)地质纵断面

Figure 3 NS-trending (Line 14) geological profile

表1 岩土一般物理力学指标标准值汇总统计

Table 1 - Summary of Standard Values of general physical and meenamear mackes of fock and son

地层	w/%	$\gamma/(kN \boldsymbol{\cdot} m^{-3})$	$S_{\rm r}/\%$	$w_{ m L}/\%$	$w_{ m p}/\%$	$a_{\rm s}/({\rm MPa}^{-1})$	$E_{\rm s}/{ m MPa}$	$arphi/(\degree)$	c/kPa
人工填土	28.6	19.1	95.1	34.5	20.7	0.552	3.5	15.4	27.2
中粗砂	—	19.8	—	—	—	—	—	30.0	3.0
砾质黏性土	23.7	18.6	82.2	33.2	20.1	0.398	4.78	20.3	26.5
全风化花岗岩	17.8	18.4	67.2	29.4	18.1	0.363	5.14	23.5	29.5
土状强风化花岗岩	18.9	18.3	68.6	29.5	18.1	—	_	—	—
中风化花岗岩	_	26.0	_	—	_	—	_	—	—
微风化花岗岩	—	27.0	—	—	—	—	—	—	—

注:w为天然含水量; γ 为天然重度; S_r 为饱和度; w_L 为液限; w_p 为塑限; a_s 为压缩系数; E_s 为压缩模量; φ 为直剪内摩擦角;c为直剪黏聚力。

钢箱梁桥作为研究区域。采用 Plaxis 3D 建立枢纽核 心区三维有限元模型,如图4所示。为了减小边界效 应的影响,模型边界距离结构的最小距离均大于3倍 开挖深度,模型的几何尺寸为450 m×450 m×60 m。 四周边界约束法向位移,底部固定。模型顶部边界 自由排水,地下水位位于地表以下5.4 m。

模型土层自上而下分别为填土、填石、花岗岩残 积砾质黏性土、全风化花岗岩、强风化花岗岩以及 中/微风化花岗岩。地下连续墙、楼板、结构墙均按 照实际几何尺寸,以板单元模拟;排桩按照等效刚度 的原则,计算等效厚度后,以板单元模拟。由于板单 元只存在计算厚度而没有实际厚度,因此埋置于土 体中的结构需要减去土体重度。立柱有钢筋混凝土 立柱与钢管混凝土立柱,分矩形截面类型和圆形截 面类型,在两道板撑之间设置梁单元模拟立柱,其两 个连接节点均为刚结。立柱桩采用嵌入式梁单元模 拟,顶部为竖向坐标最大值点,与结构刚结,底部嵌 于土体中,嵌入式梁单元可以输入桩身摩擦力和桩 端阻力,并且桩身有特殊的截面单元来模拟桩土作 用,从而更真实地反映桩的力学性能。

2.2 材料参数

2.2.1 地层参数

对于基坑开挖类问题,如果不考虑土体的小应 变刚度,会低估挡土墙后的沉降,高估较远范围内的 沉降和影响范围。小应变硬化本构模型(HSS)可以 很好地处理此类问题,根据勘察数据,填土、填石和 微风化花岗岩采用摩尔-库仑模型,其余土层本构模 型选用小应变硬化土模型(Hardening Soil-Small model,HSS),详细参数见表2、3。在主要的开挖土

表2 地层参数(摩尔-库仑模型)

 Table 2
 Parameters of soil layers (Mohr-Coloumb model)

土层	c/kPa	$\varphi/(\degree)$	$\varPsi/(\degree)$	<i>E</i> /MPa	
素填土	2.0	26	0	15	
填石	6.5	35	0	18	
微风化花岗岩	800.0	40	18	5 500	

注:c为有效黏聚力;φ为有效内摩擦角;Ψ为剪胀角;E为弹性模量。

层,通过室内试验和旁压试验参数反演,并参考深圳 地区典型土层的参数,采用HSS本构模型,采用旁压 试验反演得到的参数进行深圳地区基坑开挖类工程 实例验证后,确定其计算参数值^[20-21]。

2.2.2 结构参数

地下连续墙、排桩、墙结构、板结构等可采用基 于 Mindlin 理论的板单元来模拟。当其为矩形截面时 输入真实厚度;当其为排桩等其他截面时需要利用 刚度等效转换计算,板单元的参数见表4。

支撑体系中立柱、梁、结构柱、钢管混凝土柱、钢管混凝土桩等采用梁单元和嵌入式桩单元模拟,采 用等效刚度计算其等效轴向刚度和弯曲刚度,计算 公式如式(1)、(2):

$$EA = E_{a}A_{a} + E_{c}A_{c} \tag{1}$$

表3 地层参数(小应变硬化土模型)

Table 3 Parameters of soil layers	(small-strain hardened soil model)
-----------------------------------	------------------------------------

土层	c/kPa	$arphi/(\degree)$	$\Psi\!/(°)$	$R_{ m f}$	$E_{50}^{ m ref}/{ m MPa}$	$E_{ m oed}^{ m ref}/ m MPa$	$E_{\rm ur}^{\rm ref}/{ m MPa}$	m	$\gamma_{0.7}/10^{-4}$	$G_0^{ m ref}/ m MPa$
砾质黏性土	8	32	2	0.92	12.75	12.75	43.3	0.72	1.67	90
全风化花岗岩	15	30	0	0.95	15.00	15.00	60.1	0.70	2.00	135
强风化花岗岩	25	33	3	0.95	20.00	20.00	75.0	0.68	2.00	180

注:c为有效黏聚力;φ为有效内摩擦角;Ψ为剪胀角;R_f为破坏比;E^{ref}₅₀为三轴压缩试验的参考割线模量;E^{ref}_{oed}为固结试验的 参考切线模量;E^{ref}_{ur}为卸载再加载参考割线模量;m为刚度应力水平相关幂指数;γ_{0.7}为剪切模量衰减到0.722倍初始剪切 模量时的剪应变;G^{ref}₀为土体在参考应力下的剪切模量。

表 4 板单元参数 Table 4 Board unit parameters

名称	厚度 d/mm	重度γ/ (kN・m ⁻³)	弹性模量 <i>E/</i> (10 ⁶ kPa)	泊松比 ν
板撑	400/600/700/ 800/900/1 000/ 1 300/1 700	25	31.5	0.2
地下连续墙	1 000/1 200	5	31.5	0.2
灌注桩	1 310	5	31.5	0.2

$$EI = E_a I_a + E_c I_c \tag{2}$$

式中:A_a、I_a分别为钢管横截面面积和其对重心轴的 惯性矩;A_c、I_c分别为钢管内混凝土横截面面积和其 对重心轴的惯性矩;E_a、E_c分别为钢管和混凝土的弹 性模量。参数取值见表5。

表 5 立柱、桩参数 Table 5 Parameters of column and pile

by the	面积 $A/$	重度γ/	弹性模量E/	惯性矩 I/
名协	m^2	$(kN \cdot m^{-3})$	(10^6kPa)	m^4
坑内立柱	1.140	25	37.0	0.31
桩1	4.900	25	31.5	1.917
桩 2	7.069	25	31.5	3.976
立柱 KZ-1	1.5×0.9	25	31.5	0.091/0.253
立柱 KZ-2	1.3×0.9	25	31.5	0.079/0.165
立柱 TK-Z1	1.3×0.8	25	31.5	0.055/0.147

2.3 施工工况和分析步

有限元模型各分析工况对应的分析步设置汇总

于表6。开挖过程中坑内水位随挖随降,考虑到花岗 岩残积土具有一定渗透性,采用稳态渗流的排水分 析进行计算。

表6 有限元分析步

Table 6	Finite	element	analysis	step
---------	--------	---------	----------	------

分析步	工况
1	地应力平衡
2	7号线主体结构
3	钢便桥和桥墩、桥下立柱桩(分析步开始时重置位移值)
4	14号线、24号线基坑地连墙和立柱桩
5	14号线基坑南北区顶板
6	14号线核心区和24号线顶板
7	14号线南北区第一层开挖
8	14号线南北区夹层板
9	14号线南北区小基坑开挖
10	14号线中区、24号线第一、二层开挖
11	14号线南北区第三层开挖
12	14号线南北区第四层开挖、底板
13	14号线中区、24号线第三层开挖
14	14号线中区、24号线第四层开挖
15	14号线中区、24号线第五层开挖

3 结果分析

3.1 基坑变形

3.1.1 围护结构变形

图 5 为围护结构的变形云图。14 号线基坑围护

结构最大变形发生在北区北侧,最大位移值为25.3 mm:24号线基坑围护结构最大变形发生在北侧一级 基坑地连墙中间位置,最大位移达到31.6 mm。盖挖 逆作法施工和分区开挖的施工方案能够较好地控制 围护结构的变形,在最大开挖深度接近40m的情况 下,围护结构变形整体仍在《城市轨道交通工程监测 技术规范》(GB 50911-2013)^[22]、《城市轨道交通工 程测量规范》(GB/T 50308—2017)^[23]等规范要求范 围以内。24号线一级基坑地连墙位移较大,主要原 因是一级基坑地连墙设计深度较浅,墙底处于全风 化花岗岩层和土状强风化花岗岩层,整体风化程度 高,力学性质较差;而二级基坑围护结构位移相对较 小,特别是在深度35m以下,位移减小至接近0。这 一方面是由于一级基坑逆作施工完成后,结构体系 形成,能够为二级基坑提供良好的支撑作用;另一方 面,二级基坑所处的土层主要是中、微风化花岗岩 层,岩体风化程度较低,力学性质好。

图 6 为选取的 4 个典型断面的围护结构水平位 移曲线。24 号线南北侧围护结构变形规律较为一 致,其中一级基坑水平位移随深度先增大后减小,并 在 19.1 m 处达到最大值,二级基坑位移在深度 28 m 位置均维持在 15 mm 左右,但随着深度超过 28 m,围 护结构水平位移快速减小,并在底板深度处快速减 小至 0。这是因为底板处已经位于中、微风化花岗岩 层中,岩体力学性质较好,因此对变形起到较好的约 束作用。17.7~24.0 m 深度为一、二级基坑重叠区 域,此处由于外侧一级基坑地连墙的遮拦作用,内侧 二级基坑的墙体水平位移相对较小,两段地连墙的 水平位移在一级基坑墙底(24 m)处趋于一致。

3.1.2 顶板沉降

图 7 为 14、24 号线顶板沉降云图。由于采用了 盖挖逆作法施工,地连墙施工完成后马上施作顶板, 在后续开挖影响下,顶板产生了不同幅度的下沉。 其中,14 号线顶板沉降较小,呈现出中心区大,四 周较小的特点,最大沉降量出现在北区,沉降量为 17.6 mm。24 号线整体沉降量较大,特别是靠近北侧 位置,最大沉降量达到 27 mm。

Figure 7 Top plate settlement

3.2 土体变形

图 8 为土体沉降云图。坑内土体受卸载影响发 生隆起,但由于采用盖挖逆作法施工,随着开挖进行 同步施作主体结构,因此坑内土体隆起量较小,24 号 线一、二级基坑之间的土体隆起量最大,达到 34.8 mm,基坑坑底隆起量均小于 20 mm。受坑内卸载和 降水共同影响,紧邻基坑的外侧土体发生了比较明 显的沉降,最大沉降量为 34.8 mm。

3.3 既有车站变形

3.3.1 7号线围护结构变形

图 9 为既有 7 号线车站围护结构的位移(y方向)。车站中区和南北区中段的位移较大,最大位移出现在中区,最大值为 9.4 mm,小于规范控制值^[22-23];车站边缘处受空间效应影响,水平位移较小。远离基坑侧的围护墙受影响稍小,最大水平位移为 8.4 mm,与近侧围护结构差别不大。

图 10 为典型断面的围护结构水平位移。两个断 面围护结构深度不同,但位移变化规律基本一致。 顶板高度处围护结构水平位移很小,随着深度增加, 围护结构受基坑卸载的影响更加明显,水平位移逐 渐增大,最大水平位移出现在负二层板位置。底板 位置的水平位移大幅减小,中区围护结构40 m深度、 北区围护结构35 m深度时基本无水平位移。

3.3.2 结构板沉降

图 11 为既有 7 号线顶板、负一层板、负二层板和 底板的沉降云图。基坑开挖引起既有 7 号线结构板 主体部分的沉降不超过 5 mm,北区沉降量大于中区 和南区,在车站边缘处基本无沉降。在出入口部分 沉降略大,最大沉降值达到 9.6 mm。

图10 典型断面围护结构水平位移

Figure 10 Horizontal displacement of typical cross-sectional envelope structure

图11 既有7号线结构板沉降

3.4 钢便桥变形

图 12 为钢便桥钢箱梁底部钢板的沉降云图。钢 箱梁产生最大 16.6 mm 的沉降,这是由于钢便桥修建 完成后上面作用有行车荷载。图 13 为距离 14 号线基 坑最近的一排钢便桥桥桩的桩顶位移曲线,桥桩整 体沉降量较小,最大值出现在 14 号线北侧基坑中部, 沉降量 2.3 mm,南侧桥桩的水平位移不超过 5 mm, 但北侧桥桩水平位移较大,最大值达到了 10.5 mm。

特别需要注意的是,24号线基坑内的桥桩由于上部 没有土体的约束作用,水平位移达到了9.6 mm。

3.5 方案优化

3.5.1 加设临时混凝土支撑

在24号线负一层中间高度加设一层临时混凝土 支撑,限制一级基坑整体变形。临时支撑在后面的V 形柱-临时柱转换后,与临时柱同时拆除。建立优化 后的有限元模型,并与优化前的结构变形进行对比。 优化后的24号线一级基坑围护结构变形云图如图14 所示,土体沉降云图如图15所示。

图15 加设支撑后土体沉降云图

从图 14 可以看出:在负一层增加临时支撑后,最 大围护结构变形减小为 16.0 mm(加设支撑前围护结 构变形为 31.6 mm,见图 5),位移控制效果明显;从图 15 可以看出:该优化方案对土体变形有明显控制作 用,土体最大沉降从 34.8 mm(图 8)减小至 18.2 mm。 **3.5.2** 基坑内钢便桥桥墩增设钢套筒

为了减小基坑内钢便桥桥墩失稳风险,在基坑 内相邻两根钢便桥桥桩之间增设3道连梁,通过钢套 筒将桥桩和钢梁相连。在开挖至对应深度后,进行 钢连梁施工,并在钢便桥拆除时统一拆卸。

3.6 实施效果

图 16 为基坑围护结构仿真分析与现场实测结果 对比,加设临时混凝土支撑后,仿真得到的地表沉降 与围护结构变形规律和大小均与实测结果较为吻 合,说明了数值仿真结果的可靠性。并由现场监测 结果可知:基坑内钢便桥桥墩加设钢套筒后,桥桩最 大实测水平位移 5.6 mm,满足规范要求^[22-23],施工过 程安全可靠。

(b) 围护结构水平位移仿真与实测结果对比

图 16 仿真分析与现场实测结果对比(基坑围护结构) Figure 16 Comparison between simulation analysis and field measurement results (envelope structure of foundation pit)

4 结论

基于深圳市黄木岗综合交通枢纽紧邻既有车站 和钢便桥的超大异形基坑施工的工程案例,建立三 维有限元模型,对基坑变形、紧邻既有车站变形和钢 便桥变形进行研究和分析,并提出相应优化方案,得 出以下结论:

(1)基坑南北侧围护结构的变形趋势整体一致, 但与北侧相比南侧变形更大,由于北侧14、24号线的 地连墙呈钝角相交,而南侧两条线的地连墙呈锐角 相交且14号线南侧墙体较短,空间效应北侧比南侧 更为明显。坑内卸载时,坑外土压力可以较为充分 地作用在围护结构上。

(2)通过既有车站变形可以看出:车站中区和南 北区中段的位移较大,最大位移出现在中区,最大值 为9.4 mm,远离基坑侧的围护墙受影响稍小,最大水 平位移为8.4 mm,与近侧围护结构差别不大。随着 开挖深度的增加,围护结构受基坑卸载的影响更加 明显,水平位移逐渐增大,最大水平位移出现在负二 层板位置。

(3)由于行车荷载的作用,钢便桥产生最大沉降为16.6 mm,14号线基坑附近钢便桥桥桩整体沉降量较小,最大沉降量为2.3 mm,南侧桥桩水平位移不超过5 mm,北侧桥桩水平位移最大值为10.5 mm。

(4) 通过数值模拟分析,可通过加设临时混凝土 支撑和基坑内钢便桥桥墩增设钢套筒进行方案优 化,对于结构的位移以及稳定性控制效果明显。采 用优化方案后,围护结构最大变形从31.6 mm减小至 16.0 mm,基坑周围土体最大沉降从34.8 mm减小至 18.2 mm。

参考文献:

References:

 [1] 谷淡平,凌同华,殷枝荣,等.便桥荷载作用下深基坑地下 连续墙变形特性分析[J].地下空间与工程学报,2020,16
 (6):1781-1791.

GU Danping, LING Tonghua, YIN Zhirong, et al. Analysis of deformation characteristics of diaphragm wall in deep foundation pit under load of temporary bridge[J]. Chinese Journal of Underground Space and Engineering, 2020, 16 (6):1781-1791.

[2] 李小雪,雷可,谭忠盛,等.城市地下空间施工风险因素耦

合效应研究[J].土木工程学报,2021,54(1):76-86.

LI Xiaoxue, LEI Ke, TAN Zhongsheng, et al. Study on coupling effect of risk factors in urban underground space construction[J]. China Civil Engineering Journal, 2021, 54 (1):76-86.

 [3] 张振波,宋太森,郑筱彦,等.基坑风险评估的全客观过程 层析分析计算方法[J].地下空间与工程学报,2021,17(2): 991-997,1043.

ZHANG Zhenbo, SONG Taisen, ZHENG Xiaoyan, et al. Total objective process chromatographic analysis and calculation method for risk assessment of foundation pit [J]. Chinese Journal of Underground Space and Engineering,2021,17(2):991-997,1043.

- [4] CHEN R P,MENG F,LI Z C,et al.Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology,2016,58:224-235.
- [5] 钟翰虎,李聪,李雨林,等.偏压荷载下深基坑支护结构非对称变形与控制技术研究[J].中外公路,2022,42(1):34-37. ZHONG Hanhu, LI Cong, LI Yulin, et al. Research on asymmetric deformation and control technology of supporting structure of deep foundation pit under eccentric load[J]. Journal of China & Foreign Highway, 2022,42(1):34-37.
- [6] 赵良云,卜铭,徐茂虎,等.温度作用下深基坑钢支撑自伺服系统轴力研究[J].中外公路,2021,41(4):36-40.
 ZHAO Liangyun, BU Ming, XU Maohu, et al. Study on axial force of steel supporting self-servo system in deep foundation pit under temperature load[J].Journal of China & Foreign Highway,2021,41(4):36-40.
- [7] 李浩,贺祖浩,杨钊,等.软弱地层临近深基坑工程房屋沉 降注浆控制研究[J].中外公路,2021,41(1):26-30
 LI Hao, HE Zuhao, YANG Zhao, et al. Study on grouting control for settlement of neighboring buildings with deep foundation in soft ground layer[J]. Journal of China & Foreign Highway,2021,41(1):26-30.
- [8] 胡风明,宋健,闫磊,等.危岩带下深基坑开挖关键技术及 仿真分析[J].中外公路,2020,40(4):11-15.
 HU Fengming,SONG Jian,YAN Lei,et al.Key technology and simulation analysis of deep foundation excavationin dangerous rock band[J]. Journal of China & Foreign Highway,2020,40(4):11-15.
- [9] 王志杰,周飞聪,周平,等.基于强近接大型基坑单侧开挖 卸载既有车站变形理论研究[J].岩石力学与工程学报, 2020,39(10):2131-2147.

WANG Zhijie,ZHOU Feicong,ZHOU Ping, et al. Research on deformation theory of existing stations based on single side excavation and unloading of large foundation pits with strong close connection[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(10):2131-2147.

- [10] 齐朋,张宇奇,王宁.深基坑围护结构横向位移监测和数 值模拟分析[J].中外公路,2022,42(1):38-42.
 QI Peng,ZHANG Yuqi,WANG Ning.Lateral displacement monitoring and numerical simulation analysis for retaining system of deep foundation pit[J]. Journal of China & Foreign Highway,2022,42(1):38-42.
- [11] 马凯伦,董明礼,曹义,等.两侧双基坑开挖对密贴地铁车站的影响研究[J].地下空间与工程学报,2022,18(增刊2):1043-1048.
 MA Kailun, DONG Mingli, CAO Yi, et al. Influence of excavation of double foundation pits on both sides of the metro station [J]. Chinese Journal of Underground Space and Engineering,2022,18(sup 2):1043-1048
- [12] 信磊磊,杜一鸣,郑刚.两侧深基坑开挖对近邻地铁车站及隧道 变形影响的优化分析[J].铁道标准设计,2016,60(5):84-90.
 XIN Leilei,DU Yiming,ZHENG Gang.Optimal analysis of influences on deformation of adjacent metro station and tunnel due to deep pit bilateral excavations[J]. Railway Standard Design,2016,60(5):84-90.
- [13] 胡瑞青,戴志仁,李储军,等.砂卵石地层基坑开挖对侧方 地铁交叉隧道和车站的影响分析[J].铁道标准设计, 2018,62(12):118-124.

HU Ruiqing, DAI Zhiren, LI Chujun, et al. Analysis of influence of foundation pit in sandy cobble stratum on side metro crossing tunnel and station[J]. Railway Standard Design,2018,62(12):118-124.

[14] 旷庆华.同深基坑开挖引起紧邻地铁车站变形特性研究[J].铁道标准设计,2015,59(5):130-132,137.

KUANG Qinghua. Study on characteristics of subway station deformation induced by excavation of adjacent deep foundation pit[J]. Railway Standard Design, 2015, 59 (5):130-132,137.

- [15] 高盟,高广运,冯世进,等.基坑开挖引起紧贴运营地铁车站 的变形控制研究[J].岩土工程学报,2008,30(6):818-823.
 GAO Meng,GAO Guangyun,FENG Shijin,et al.Control of deformation of operating subway station induced by adjacent deep excavation[J]. Chinese Journal of Geotechnical Engineering,2008,30(6):818-823.
- [16] 冉启仁,王旭,王博林,等.基坑开挖对邻近建筑桩基弯矩和变形
 影响的模型试验[J].岩土工程学报,2021,43(增刊1):132-137.
 RAN Qiren,WANG Xu,WANG Bolin,et al.Model tests on

influences of excavation of foundation pits on bending moment and deformation of pile foundation of adjacent buildings[J].Chinese Journal of Geotechnical Engineering, 2021,43(sup 1):132-137.

[17] 刘念武,陈奕天,龚晓南,等.软土深开挖致地铁车站基坑 及邻近建筑变形特性研究[J].岩土力学,2019,40(4):1515-1525,1576.

LIU Nianwu, CHEN Yitian, GONG Xiaonan, et al. Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J].Rock and Soil Mechanics,2019,40(4):1515-1525,1576.

- [18] LIU G B,HUANG P,SHI J W,et al. Performance of a deep excavation and its effect on adjacent tunnels in Shanghai soft clay[J]. Journal of Performance of Constructed Facilities,2016,30(6):04016041.
- [19] LIANG R Z, WU J, SUN L W, et al. Performances of adjacent metro structures due to zoned excavation of a large-scale basement in soft ground[J]. Tunnelling and Underground Space Technology,2021,117:104123.
- [20] 朱旻,陈湘生,张国涛,等.花岗岩残积土硬化土模型参数 反演及工程应用[J].岩土力学,2022,43(4):1061-1072.
 ZHU Min, CHEN Xiangsheng, ZHANG Guotao, et al. Parameter back-analysis of hardening soil model for granite residual soil and its engineering applications[J]. Rock and Soil Mechanics,2022,43(4):1061-1072.
- [21] 刘继强,朱旻,郝琨,等.上方基坑施工引起新运营隧道变 形与病害分析[J].中外公路,2024,44(3):202-210.
 LIU Jiqiang, ZHU Min, HAO Kun, et al. Deformation and damage characteristics of a newly operated tunnel caused by above foundation pit construction[J].Journal of China & Foreign Highway,2024,44(3):202-210.
- [22] 北京城建勘测设计研究院有限责任公司.城市轨道交通 工程监测技术规范:GB 50911—2013[S].北京:中国建筑 工业出版社,2014.

Beijing Urban Construction Exploration & Surveying Design Research Institute Co., Ltd.. Code for monitoring measurement of urban rail transit engineering: GB 50911— 2013[S].Beijing:China Architecture & Building Press,2014.

[23] 北京城建勘测设计研究院有限责任公司.城市轨道交通 工程测量规范:GB/T 50308-2017[S].北京:中国建筑工 业出版社,2017.

Beijing Urban Construction Exploration & Surveying Design Research Institute Co., Ltd.. Code for urban rail transit engineering survey:GB/T 50308—2017 [S].Beijing: China Architecture & Building Press,2017.