DOI:10.14048/j.issn.1671-2579.2023.06.030

钢-混组合梁整体式无缝桥主梁-桥台节点 承载力有限元分析

宋成志¹,许冰²,胡强³,王旭²

(1.陕西省公路局,陕西西安 710054;2.西安公路研究院有限公司,陕西西安 710065;3.长安大学公路学院,陕西西安 710064)

摘要:无缝桥能有效消除和缓解桥梁伸缩缝和支座的耐久性病害问题,在中小跨径桥梁中具有较广阔的应用前景。由于上部结构和下部结构形成整体框架结构,钢-混组合梁整体式无缝桥的主梁-桥台节点的受力复杂。该文建立主梁-桥台的非线性有限元模型,选取钢梁嵌入深度、混凝土桥面板厚度和桥台横向宽度为研究参数,分析其对节点受力性能的影响,并基于此建立节点的受力分析模型,提出节点的承载力计算公式。结果表明:主梁嵌入深度和桥台横向宽度是影响节点承载力的关键参数,该文提出的承载力计算公式与有限元计算结果吻合较好。

关键词:整体式无缝桥;主梁-桥台节点;钢-混组合梁;承载力

中图分类号:U442.5 文献标志码:A

0 引言

为解决伸缩缝带来的桥梁耐久性病害,诸多学 者和工程师开展了无伸缩缝桥梁(简称无缝桥)的实 践和研究^[1]。相对于传统有伸缩缝桥梁,无缝桥从根 本上解决了伸缩装置带来的病害与维修更换问题, 从而降低桥梁的后期养护费用、增强行车舒适性。 钢-混组合梁桥充分发挥混凝土受压和钢材受拉的 特性,具有良好的受力特性和经济效益,在欧美等国 家已经成为中小跨径桥梁的主要桥型之一[2]。将钢-混组合梁应用于无缝桥中,可使得无缝桥的跨越能 力大大增加[3]。由于上部结构和下部结构形成整体 框架结构,钢-混组合梁整体式无缝桥的主梁-桥台 节点的受力复杂,且是传力的关键部位,需要承受剪 力、弯矩、轴力等作用。目前,主梁-桥台节点构造多 凭借经验,缺乏细致的设计和建造规范,桥梁建成后 容易出现诸多病害,不仅威胁桥梁安全,也会进一步 降低桥梁的使用性能和耐久性,增加维养成本。

国外针对钢-混组合梁整体式无缝桥的建造和

研究较早。Itani等^[4]对钢主梁整体式桥台的抗震性 能进行了研究,在有限元和试验研究的基础上,得到 了整体桥梁抗震分析和设计指南:Kim等^[5]将剪力钉 和PBL应用于现有主梁-桥台节点,并进行了承载力 试验,研究表明,所提出的节点具有良好的刚性行 为、抗荷载和抗裂能力,受力性能优于经验构造的节 点;Iwasaki等^[6]从节点的典型结构、施工实例和改进思 路等方向对日本常见的3种钢-混组合梁桥台节点进行 了总结。中国虽然对混凝土主梁无缝桥的静力性能、 动力性能、既有桥梁无缝化改造等方向做了大量研 究,但是,关于钢-混组合梁无缝桥的研究却很少,主 要有:黄育凡等[7]介绍中国首座钢-混组合梁半整体 桥的设计与施工;吴庆雄等^[8]设计了中国首座钢-混 组合梁整体式无缝桥——北刘屋桥,桥长38.2m,桥 墩和主梁通过钢棒连接形成半刚性连接:衡江峰^[9]从 结构形式、受力特点和应用现状三个角度概述了钢-混组合整体式桥台桥梁的应用状况:徐锋铭等^[10]提 出了一种新型主梁-桥台节点构造细节,通过有限元 计算分析了梁台结合部的受力破坏模式、荷载-位移 关系、弯矩-相对转角关系,研究结果表明:提出的梁

收稿日期:2022-10-13 基金项目:陕西省交通运输厅交通科研项目(编号:17-19K) 作者简介:宋成志,男,大学本科,高级工程师.E-mail:1109936108@qq.com

台节点具有抗弯刚度较大、承载能力高的特点,且节 点构造简单、受力合理。

综上,国内外对于钢-混组合梁整体式无缝桥的 研究已经取得较为丰富的研究成果,但是,针对其中 主梁-桥台节点承载力的研究却极少。为此,本文采 用有限元数值模拟方法研究主要设计参数对钢-混 组合梁整体式桥台节点的影响,并在此基础上提出 节点的承载力计算公式。

主梁-桥台节点有限元分析模型及 验证

1.1 有限元模型

选择美国一座具有代表性的钢-混组合梁整体 式无缝桥(Middlesex桥)进行分析。Middlesex桥为 单跨钢-混组合梁整体式无缝桥(图1),跨径43m,横 桥向宽10.2m,横向布置5根345W工字钢,钢梁间距 均为2.05m,混凝土桥面板厚220mm。钢梁两端嵌 入桥台之中。每根钢梁和桥面板之间设置两排直径 22mm、长180mm的剪力钉。桥台平均高4m、厚1 m。桥台下钢桩长9m。

图1 Middlesex 桥构造图(单位:m)

计算得到桥台弯矩最大值在距台顶1.5~2m位 置,因此,建模时仅截取桥台竖向2m高度的范围。5 片主梁受力基本一致,若不考虑横向分布的影响,选 取其中一个主梁-桥台节点,利用对称性采用有限元 软件 Abaqus 建立 1/2 模型(图 2)。其中, 混凝土桥台 宽1m、厚1m, 主梁加载点距离台前表面 1.2m。

189

图 2 节点有限元模型

模型中混凝土本构采用混凝土塑性损伤本构, 混凝土的应力-应变关系曲线采用文献[11]中混凝 土的本构关系;钢材采用三折线本构。桥台、钢梁采 用实体单元C3D8R,钢筋采用三维2节点桁架单元 T3D2。钢梁和混凝土桥台采用面-面接触,切向的接 触采用罚函数形式,摩擦系数取0.5,临界摩擦应力 0.462 MPa^[12],法向采用硬接触。节点整体边界条件 为桥台底部固结,加载形式采用位移线性加载。

1.2 有限元模型验证

选取文献[11]中主梁-桥台节点试验的试验数据,对上述建模方法进行验证。采用上述建模方法 建立文献中试件的有限元模型,有限元分析结果与 文献试验结果的对比如图3、4所示。

(a)试验节点裂缝分布

(b)有限元混凝土应变

图 3 有限元与试验裂缝对比

图4 有限元与试验荷载-位移曲线对比

由图 3 可知:试件的破坏表现为混凝土桥台开裂 裂纹,钢梁下混凝土被压碎等,有限元计算得到的试 件破坏形态与试验吻合较好。由图 4 可知:有限元计 算得到的荷载-位移曲线与试验测得曲线吻合较好, 两者不仅具有相近的极限荷载(两者比值为 1/1.1), 且具有相同的曲线发展趋势。因此,有限元计算结 果与试验结果吻合较好,上述有限元建模方法可用 于钢-混组合梁整体式无缝桥主梁-桥台节点的参数 分析。

2 主梁-桥台节点承载力参数分析

2.1 参数设置

Mattock和Gaffar给出了影响一般钢构件-混凝 土构件混合节点受弯承载力的因素:混凝土抗压强 度、混凝土构件的宽度、钢构件的宽度、钢构件嵌入 混凝土的长度^[13]。因此,本文选取钢桩嵌入深度L_e、 桥面板厚度h、混凝土桥台横向厚度B3个物理量作 为研究参数,通过有限元法研究以上参数对节点静 力性能的影响。

2.2 嵌入深度 L_e

嵌入深度是对承载力影响最明显的参数,设置 嵌入深度为450 mm、550 mm、650 mm、750 mm、850 mm 5组节点进行分析。不同嵌入深度节点的荷载-位移曲线见图 5,对应的桥台应变云图及破坏模式见 图 6 及表 1。可以发现:

(1)嵌入深度450mm节点刚度小,顶部混凝土 未开裂就导致钢梁转动过大计算不收敛,其余节点 破坏均由顶部混凝土达到极限应变造成。

(2)由图5(b)可知:随着钢梁嵌入深度的增加, 节点承载力呈近似线性增长。

(3) 当嵌入深度达到 850 mm 后, 钢梁下端部混

凝土出现明显的纵桥向裂缝,并有进一步贯穿的趋势,为防止裂缝贯穿桥台厚度,对桥台端部厚度应当 给予最小限值。

图 5 嵌入深度对承载力的影响

表1 不同嵌入深度的桥台应变破坏模式

$L_{\rm e}/{ m mm}$	破坏模式						
450	台顶不开裂;钢梁附近混凝土压碎导致						
430	钢梁转动过大不收敛						
550	台顶混凝土被顶裂破坏						
650	台顶混凝土被顶裂破坏						
750	台顶混凝土被顶裂破坏						
8E0	台后的钢梁顶底板位置开裂;						
000	台顶混凝土被顶裂破坏						

2.3 混凝土桥面板厚度h

由不同嵌入深度节点的破坏模式可知节点破坏 可能由顶部混凝土开裂导致。根据《钢-混凝土组合 桥梁设计与施工细则》,混凝土板最小厚度不宜小于 220 mm^[14],实际工程桥面板厚度多为220~250 mm。 因此,设置桥面板厚为220 mm和250 mm的节点进 行分析,不同桥面板厚度的荷载-位移曲线如图7所

2 位移/mm

3

图7 不同桥面板厚度时节点荷载-位移曲线

示。可以发现:不同桥面板厚度的节点承载力几乎 没有变化,桥面板厚度对承载力影响很小。

2.4 桥台横向宽度 B

200

100 0

横向厚度对钢梁起到横向支撑作用,横向厚度 较小时,结构容易发生冲剪破坏。为此设置横向厚 度为400 mm、500 mm、600 mm、800 mm、1000 mm 和1500mm的节点进行分析,不同厚度的荷载-位移 曲线和极限荷载如图8所示,桥台应变如表2所示, 破坏模式如图9所示。可以发现:

(1) 横向厚度400 mm节点混凝土裂缝沿钢梁底 部位置贯穿,节点受拉破坏,钢梁顶部混凝土无裂 缝;除了横向厚度400 mm节点为台背混凝土受拉造 成节点破坏,其余节点为顶部混凝土开裂破坏。

(2) 当桥台横向厚度小于 500 mm 时,承载力变 化幅度很大;横向厚度大于500mm时,承载力变化 小,曲线逐渐趋于平缓。因此,桥台横向厚度不宜小 于500 mm,即两钢主梁中心水平间距不宜小于1 m。

主梁-桥台节点承载力计算公式 3

3.1 力学模型

根据节点受力特征,本文提出主梁-桥台节点的

图8 横向厚度对承载力影响

表2 不同横向厚度节点的桥台应变破坏模式

B/mm	破坏形态
400	台后混凝土拉裂破坏
500	台后开裂;台顶混凝土被顶裂破坏
600	台后开裂;台顶混凝土被顶裂破坏
800	台后开裂;台顶混凝土被顶裂破坏
1 000	台后不开裂;台顶混凝土被顶裂破坏
1 500	台后不开裂;台顶混凝土被顶裂破坏

受力模型,如图10、11所示。根据钢梁中心线剖面位 置混凝土应力图可知:钢梁上下两块翼板与混凝土 的接触位置是传递应力的主要部位,接触压应力的

第43卷

图9 不同横向厚度节点的桥台应变云图

图10 钢梁和混凝土传力区域(单位:MPa)

图11 节点受力模型

分布可以简化成4个受压区,4个受压区域按照"大小 不变、位置相同"的原则等效成4个矩形受压应力区 域,由截面的受力平衡可以得到:

$$\begin{cases} \sum F_{y} = 0\\ \sum M_{o} = 0 \end{cases}$$
(1)

$$\begin{cases} V = F_1 - F_3 + F_2 - F_4 \\ M = F_3 C_3 - F_1 C_1 + F_4 C_4 - F_2 C_2 \end{cases}$$
(2)

式中: F_y 为钢梁相对于台前表面竖向力; M_a 为钢梁相 对于台前表面弯矩;V为钢梁在台前表面处剪力,即 节点抗剪承载力; F_1 、 F_2 、 F_3 、 F_4 为钢梁4块受压区域 等效集中力;M为钢梁在台前表面处弯矩,即节点抗 弯承载力; C_1 、 C_2 、 C_3 、 C_4 为钢梁4块受压区域等效集 中力作用位置。

$$F_1 = f_1 L_1 b = \beta_1 f_{\rm ck} L_1 b \tag{3}$$

式中: f_1 为钢梁第1块受压区域等效应力; L_1 为钢梁第 1、2块受压区域受压长度;b为钢梁翼板宽度; β_1 为钢 梁第1块受压区域等效应力折减系数, β_2 、 β_3 、 β_4 类似; f_{ck} 为混凝土抗压强度。

将式(3)代入式(2),则节点抗剪承载力和抗弯 承载力为:

$$V = bf_{ck} (\beta_1 L_1 - \beta_3 L_2) + (b - t_w) f_{ck} (\beta_2 L_1 - \beta_4 L_2)$$
(4)
$$M = bf_{ck} (\beta_3 L_2 C_3 - \beta_1 L_1 C_1) +$$

$$(b-t_{\rm w}) f_{\rm ck} \left(\beta_4 L_2 C_4 - \beta_2 L_1 C_2\right) \tag{5}$$

式中:*t*_w为钢梁腹板厚度;*L*₂为钢梁第3、4块受压区域 受压长度。

3.2 参数分析结果拟合

式(4)、(5)中的未知参数有 L_1/L_2 、 β_1 、 β_2 、 β_3 、 β_4 、 C_1 、 C_2 、 C_3 、 C_4 。由于这些参数主要与嵌入深度 L_e 、桥面 板厚度h、桥台宽度B有关,因此,根据有限元结果计 算出不同参数水平时的受压区长度、等效应力系数和 等效力作用位置(表 3~5),参数拟合结果见图12。

3.3 承载力公式

在以上基础上,可最终得到节点抗剪承载力和 抗弯承载力计算公式:

$$V = bf_{ck} (\beta_1 L_1 - \beta_3 L_2) + (b - t_w) f_{ck} (\beta_2 L_1 - \beta_4 L_2)$$
(6)

表3 不同嵌入深度承载力参数

-										
	$L_{\rm e}/{\rm m}$	L_1/L_2	β_1	eta_2	β_3	β_4	C_1/m	C_2/m	C_3/m	C_4/m
	0.45	1.045	0.152	0.077	0.078	0.104	0.018	0.028	0.425	0.424
	0.55	1.075	0.157	0.075	0.078	0.090	0.023	0.041	0.518	0.500
	0.65	1.047	0.177	0.082	0.072	0.105	0.024	0.058	0.613	0.612
	0.75	0.974	0.194	0.100	0.069	0.123	0.036	0.057	0.709	0.677
	0.85	0.910	0.179	0.085	0.051	0.094	0.038	0.073	0.839	0.797

$$(b - t_{\rm w}) f_{\rm ck} \left(\beta_4 L_2 C_4 - \beta_2 L_1 C_2\right) \tag{7}$$

$$L_1 + L_2 = L_e \tag{8}$$

$$\frac{L_1}{L_2} = 1.25 - 0.372L_e \tag{9}$$

$$\beta_1 =$$

(10)

$$\begin{cases} 0.113 + 0.09L_{e} + 0.0218(B - 0.8) + \\ 0.304(h - 0.22) \\ 0.113 + 0.09L_{e} + 0.304(h - 0.22) \\ B > 0.8 \end{cases}$$

 $\beta_2 = \begin{cases} 0.0837 + 0.0232(B - 0.8) & 0.5 \leqslant B \leqslant 0.8\\ 0.0837 & B > 0.8 \end{cases}$ (11)

$$\beta_3 = 0.110 - 0.0627L_e \tag{12}$$

$$\beta_4 = 0.103$$
 (13)

$$C_1 = 0.043 \ 2L_e$$
 (14)

$$C_2 = -0.0178 + 0.107L_{\rm e} \tag{15}$$

$$C_3 = 0.958 L_e$$
 (16)

$$C_{4} = \begin{cases} 0.926L_{e} + 0.033 \ 3(B - 0.8) & 0.5 \leq B \leq 0.8 \\ 0.926L_{e} & B > 0.8 \end{cases}$$
(17)

式中:抗剪承载力V和抗弯承载力M单位分别为kN

和kN・m。

上述承载力公式适用于桥台宽度 B 不小于 0.5 m、桥面板厚度 h 为 220~250 mm 的主梁-桥台节点。 对比公式计算结果与有限元数值模拟结果(表6)可 知:公式计算得到的剪力和弯矩与有限元结果非常 接近,即公式计算结果较为准确。

	$L_{\rm e}/{ m m}$			抗剪承载力			抗弯承载力		
验算项目		h/m	B/m	公式计算	有限元值	V_1/V_2	公式计算值	有限元值	M_1/M_2
				值 V_1/kN	V_2/kN		$M_1/(\mathrm{kN}\cdot\mathrm{m})$	$M_2/(\mathrm{kN} \cdot \mathrm{m})$	
	0.45	0.22	1.00	260	224	1.16	254	268	0.95
	0.55	0.22	1.00	354	328	1.08	370	394	0.94
$L_{\rm e}$	0.65	0.22	1.00	460	420	1.09	504	504	1.00
	0.75	0.22	1.00	576	610	0.94	656	732	0.90
	0.85	0.22	1.00	700	660	1.06	822	792	1.04
h	0.75	0.25	1.00	630	638	0.99	654	766	0.85
	0.75	0.22	0.50	494	522	0.94	654	628	1.04
D	0.75	0.22	0.60	520	552	0.95	654	662	0.99
D	0.75	0.22	0.80	576	610	0.94	656	732	0.90
	0.75	0.22	1.50	576	588	0.98	656	706	0.93

表6 公式计算结果与有限元结果比较

4 结论

(1)随着钢梁嵌入深度的增加,节点承载力近似 呈线性增长,但嵌入深度过大易出现板厚不足引起 纵桥向裂缝贯穿。

(2)桥台宽度过小容易出现台后混凝土的开裂, 造成节点承载力偏低;当桥台宽度大于500mm时, 宽度的继续增加对节点承载力提高不明显。建议钢 主梁水平中心间距不宜小于1m。

(3)受限于实际设计尺寸,混凝土桥面板厚度对 节点承载力影响很小。

(4)得到的主梁-桥台节点承载力计算公式计算 结果与有限元结果吻合较好,计算结果较为准确。

参考文献:

- [1] 彭大文,林志平,洪锦祥.无伸缩缝桥梁的研究与实践[J]. 公路,2006,51(8):53-62.
- [2] LOVELL, D PH D M, PURDUE U. Long-term behavior of integral abutment bridges[J]. Dissertations & Theses Gradworks,2011,32(8):2247-2257.
- [3] PAK D, BIGELOW H, FELDMANN M.Design of composite bridges with integral abutments[J].Steel Construction, 2017, 10(1):23-30.
- [4] ITANI A M, PEKCAN G.Seismic performance of steel plate girder bridges with integral abutments[J].Engineering, 2011.

- [5] KIM S H, YOON J H, KIM J H, et al. Structural details of steel girder-abutment joints in integral bridges: An experimental study[J]. Journal of Constructional Steel Research, 2012, 70: 190-212.
- [6] IWASAKI N, TENMA S, KURITA A. Portal frame bridges in Japan: State of the art report[J]. Structural Engineering International, 2011, 21(3): 290-296.
- [7] 黄育凡,江越胜,吴庆雄,等.钢混组合梁半整体桥设计与 施工[J].福州大学学报(自然科学版),2018,46(5):693-699.
- [8] 吴庆雄,刘钰薇,江越胜,等.墩梁半刚性连接的钢-混组 合梁整体桥设计[J].桥梁建设,2019,49(1):101-106.
- [9] 衡江峰.钢-混组合整体式桥台桥梁的应用概述[J].建筑 工程技术与设计,2018(4):1387.
- [10] 徐锋铭,施兹国,张由由,等.整体式组合梁桥梁台结合 部有限元分析[J].公路交通科技(应用技术版),2015(8): 169-171,177.
- [11] LIANG C, LIU Y Q, ZHAO C J, et al. Experimental and numerical study on an innovative girder-abutment joint in composite bridges with integral abutments[J]. Construction and Building Materials, 2018, 186: 709-730.
- [12] 刘永健,刘君平,郭永平,等.钢管混凝土界面粘结滑移性能[J].长安大学学报(自然科学版),2007,27(2):53-57.
- [13] MATTOCK A H,GAAFAR G H.Strength of embedded steel sections as brackets[J]. ACI Journal Proceedings, 1982, 79 (2):83-93.
- [14] 中交公路规划设计院有限公司.公路钢混组合桥梁设计 与施工规范: JTG/T D64-01-2015[S].北京:人民交通出 版社股份有限公司, 2016.