DOI:10.14048/j.issn.1671-2579.2023.06.012

沥青路面表面纹理的检测方法及其精准度分析

陈占权 编译

(悉地(苏州)勘察设计顾问有限公司,江苏苏州 215000)

摘要:为了准确地测定出沥青路面的表面纹理信息,采用佛罗里达纹理仪(简称FTM)分别对12条沥青路面进行平均轮廓深度(简称D_{MPD})检测,以检测的D_{MPD}数据为依据,分析FTM的精准度,探讨FTM测量数据的影响因素。在此基础上,对比FTM与圆形轨道仪(CTM)测得的数据,进一步验证FTM在沥青道路表面纹理信息测量方面的可靠性。结果表明:FTM可以有效地检测沥青路面表面纹理信息,利用FTM可以快速测得D_{MPD};FTM与CTM两种方法测得结果之间存在很高的相关性,FTM测试结果可以作为表征沥青路面抗滑性能的可靠依据;此外,测试地点、级配类型和集料类型对所测道路表面纹理有显著的影响。

关键词:道路工程;路面表面纹理;佛罗里达纹理仪;抗滑性能;平均轮廓深度(D_{MPD}) **中图分类号:**U416.217 **文献标志码:** A

0 引言

交通安全是道路领域需努力解决的问题,而交 通事故与路面的抗滑性能有直接关系^[1]。道路表面 纹理是决定道路抗滑性能的重要因素[2],其按长度可 分为0~0.5 mm的微观纹理,0.5~50 mm的宏观纹理 和 50~500 mm 的巨型纹理。现行测量沥青路面表面 纹理信息的主要方法有接触式和非接触两类测量方 式^[3]。接触式测量方法包括铺砂法、排水法、摆式仪 (BPT)法、动态旋转式摩擦因数测试仪(DFTest)法 及拖车式摩擦因数仪(Grip Tester)法等,以上方法通 过仪器测定相关指标间接评价道路表面纹理状况^[4]。 非接触式测量方法包括近景摄影测量(CRP)法、数 字灰度图像法、激光测量法和工业CT扫描法。从未 来智慧交通的发展角度看,使用非接触的方法评价 路面抗滑性更符合未来的发展^[5]。激光和近景摄影 在内的非接触式测量方法由于在不干扰试样特性的 情况下收集数据,受到了工程领域的广泛关注^[6]。但 是,非接触式测量的测试设备和程序也比其他测试 方法复杂得多。Liu等^[7]开发了几种非接触方式测量 路面宏观纹理的仪器,其中圆形轨迹仪(CTM)和佛 罗里达纹理仪(FTM)是两种基于激光的便携式设 备: Prowell 等^[8]比较了 CTM 和铺砂法测量道路的纹 理信息,以评价CTM测量结果的准确性和离散度; Abe 等^[9]、Jackson 等^[10]也研究了 CTM 测试结果的有效性。FTM 是一种新型快速检测沥青路面表面纹理信息的设备,其优点是测速快、重量轻且易于操作,可用于现场检测与评价,但是缺乏大量的现场试验数据支撑。因此,该文首先验证 FTM 测量结果的精准度。同时,分析沥青混合料级配类型、集料类型及不同测量方式对 FTM 测量结果的影响。此外,在确定了 FTM 测量结果有效性和精准度的基础上,分析 FTM 和 CTM 之间的相关性,以进一步验证 FTM 测量的可靠性。

1 FTM检测原理与设备

1.1 FTM 检测原理

FTM通过将激光探头置于需检测道路区域的表面,设备借助激光信号将道路表面纹理信息反馈至计算机,再经过开发的软件生成D_{MPD}数据。其中, FTM底端的圆形测量探头分成了8个区域,D_{MPD}值 是经过8个区域分别测得D_{MPD}后计算平均值。

1.2 FTM 检测设备

FTM是基于激光研发出的一种用于检测道路表 面宏观纹理信息的便携式设备(图1),由佛罗里达州 交通运输部(FDOT)设计,后被逐渐应用于沥青路面 离析与抗滑性能检测。检测前先保持道路表面干燥 并用刷子清洁,以确保没有残留物或松散的颗粒,然 后使用FTM测量路面的纹理信息。

图1 FTM 外观

2 试验条件及安排

2.1 试验路段概况

试验路段位于美国佛罗里达州,选择该地区12 条近期铺筑的热拌沥青路面作为测试站点,各试验 路段的沥青混合料参数如表1所示。因为道路集料 的大小和类型均会影响沥青的表面纹理,所以选择 的试验路段由3种常见的沥青和两种不同级配类型 的混合料铺筑。试验段采用5种沥青混合类型:SP 9.5、SP 12.5、FC 9.5、FC 12.5和FC-5。

表1 各试验路段的沥青混合料:	参数	Į
-----------------	----	---

级配类型	混合料类型	集料类型	站点编号
		北出些	1
平奶而	FC-5	化闪石	4
开级乱	re s	石龙石	7
		11///1	12
		龙岗岩	2
	EC/SD05	161312	5
	10/01 5.5	石龙石	8
宓细配		11///1	11
留级癿		龙岗岩	3
	FC/SP 12 5	10 10 11	6
	1 0/ 51 12.5	石灰石	9
		11/1/1	10

2.2 试验路段分类

沥青混合料的级配、集料类型和路面服役时间 会影响道路表面的纹理信息^[11],为探讨FTM测试数 据的影响因素,在选择试验路段时考虑以下因素:

(1)沥青混合料的级配

最大公称粒径是影响路面纹理的主要因素,沥 青混合料的级配变化也会影响路面纹理^[12]。表1中 列出的12个试验路段是根据以下因素选择的,由于 SP 9.5和FC 9.5沥青混合料具有相同的级配和最大 公称粒径,因此将它们合并在一起,SP 12.5和FC 12.5的情况也是如此。FC 9.5和FC 12.5是磨耗层 混合料,最大公称粒径分别为9.5mm和12.5mm。 SP 9.5和SP 12.5分别是最大公称粒径为9.5mm和 12.5mm的 superpave 沥青混合料。FC-5也是一种 磨耗层混合料,最大公称粒径为12.5mm。表2为不 同类型沥青混合料的级配范围。

表2 不同类型沥青混合料的级配范围

筛孔尺寸/	SP 9.5或 FC 9.5		SP 12.5或 FC 12.5		FC-5	
mm	最小/ %	最大/ %	最小/	最大/ %	最小/ %	最大/ %
19	_	_	100	_	100	_
12.5	100	—	90	100	85	100
9.5	90	100	_	90	55	75
4.75	_	90	58	_	15	25
2.36	32	67	10	58	5	10
0.075	2	10		10	2	4

(2) 集料类型

佛罗里达州道路铺筑中一般使用石灰石和花岗 岩两种集料,该文考虑这两种集料对沥青路面表面纹 理的影响。花岗岩的质地相比石灰石更加光滑,这会 导致铺筑的沥青路面表面纹理也存在一定差异。

(3) 路面服役时间

在道路服役过程中,车辆荷载使得沥青路面产 生磨损^[13]。该文研究目标是分析FTM测量道路表 面纹理信息的精准度,所以选择的试验路段均为近 期铺筑的沥青路面。对试验路段的路面纹理信息测 量在道路铺筑后封闭交通的情况下进行。

2.3 FTM 的测量结果

为了避免每个测量设备在测量时的位置产生差异,保证FTM准确地放置在指定位置,设备的边缘 用粉笔标记。同样,在使用同一设备进行重复测量 时,设备被提起后再次放置在指示位置重复测量。

为了降低FTM测量误差,在每条试验路段随机 选择3个测试点,并在每个测试点和行车道内进行标 记。3个测试点分别命名为A、B和C,测试站点1测 量过程的原始数据如表3所示,每个测试点分别用3 个设备测量。

设备号 重	壬仁测具	各	各测量点的 D _{MPD} /mm				
	里复侧里	А	В	С			
	а	1.991 2	1.837 0	2.141 6			
1	b	1.791 7	2.084 0	2.267 2			
	с	1.985 2	1.992 8	1.988 2			
	а	1.819 2	1.856 4	2.194 3			
2	b	1.695 9	1.872 4	1.881 1			
	с	1.646 6	1.690 3	1.977 4			
3	а	1.647~4	1.847 1	2.136 8			
	b	1.709 1	1.817 5	1.987 7			
	с	$1.735\ 2$	1.809 9	2.047 7			

表3 测试点1的测量数据

3 结果及分析

3.1 试验路段纹理分布

在各个测试站点的道路表面纹理检测中发现, D_{MPD}数据(图2)存在一定差异,其中测试站点7表面 纹理分布差异较大。而且,测试站点1、4、7和12的 D_{MPD}中位数值高于其他测试站点,因为它们的沥青 混合料是FC-5,并且级配类型为开级配。

图2 道路表面纹理D_{MPD}数据

3.2 FTM和CTM之间的相关性

为了确定 FTM 测量路面表面纹理的有效性,研究 CTM 和 FTM 之间的相关性。在试验路的 1~6号站点使用两种纹理设备对沥青表面纹理信息进行了测量,每个试验路段随机选择 25 个测量点,使用 FTM 和 CTM 分别测量每个测试点的 D_{MPD},然后将测量数据的平均值作为该测试点的 D_{MPD}值。每个测试点的表面纹理通过 3个 FTM 设备进行测量,通过线性回归模型统计 D_{MPD}数据,分别对每个 FTM 设备测量的数据与 CTM 进行相关性分析,结果如图 3所示。

图 3 FTM 与 CTM 测量数据相关性分析

由图3可以看出:CTM和FTM测量数据的线性 回归分析结果 R²大于0.95,表明FTM和CTM测量 结果存在较高的相关性,所以FTM和CTM测量的 D_{MPD}可以相互替代。

为了对比FTM和CTM测量D_{MPD}平均值的差异 是否显著,对测量数据进行了t检验(表4)。由表4可 得出:CTM和FTM测量的D_{MPD}在统计上是等效的。

3.3 FTM 精度分析

精度是指在相同条件下,多次测量所得数值的 一致程度。每次测量过程都有一些不可避免的误 差,这会导致测试结果变化。因此,采用重复性和重 现性来评价 FTM 测量的精度。重现性评价方法是 使用多个设备和试验员测量,对相同路面各作单次 测量,在 95% 概率水平两个独立测试结果的最大差 值,而重复性分析是用一个装置和操作员测量的结 果,在95%概率水平两个独立测试结果的最大差值。

试验过程中,分别对12个站点进行了表面纹理 信息检测,分别通过标准差和变异系数来对重复性 和重现性进行分析。测试结果见表5。

ルタロ	平均值/mm		方差/mm		假设平均差/mm		Р	
反奋亏	FTM法	CTM法	FTM法	CTM法	FTM法	CTM法	FTM法	CTM法
1	1.07	1.10	0.51	0.49	0	—	0.11	—
2	0.94	0.94	0.37	0.40	0	—	0.92	—
3	0.97	0.99	0.22	0.25	0	_	0.34	_

表4 FTM和CTM测量数据的t检验

注: $H_0:\mu=\mu_0$ (零假设	,即FTM和CTM测得的D _M	рр均值相等);P为显著性水平。
-------------------------	----------------------------	------------------

路面	级配	集料	测试	拉店	同一设备			不同设	备	
类型 类型	类型	站点	均值	方差	标准差	变异系数/%	方差	标准差	变异系数/%	
		龙岗岩	1	1.907	0.010 6	0.103	5.396	0.016 5	0.128	6.737
		1213/17	4	1.314	0.005 1	0.071	5.424	0.008 4	0.092	6.985
开级配	FC-5	石灰石	7	2.054	0.007 2	0.085	4.132	0.012 8	0.113	5.509
			12	1.729	0.008 8	0.094	5.422	0.009 7	0.098	5.691
		花岗岩	2	0.755	0.002 7	0.052	6.950	0.002 8	0.053	7.056
FC/SP 9.5		5	0.866	0.002 1	0.046	5.175	0.003 4	0.059	6.603	
	石灰石	8	0.684	0.002 8	0.053	5.998	0.004 2	0.065	8.553	
			11	0.737	0.002 5	0.050	6.764	0.004 1	0.064	8.663
密级配	密级配	花岗岩	3	0.745	0.001 9	0.044	5.920	0.003 1	0.056	7.530
	EC/CD 19 5		6	0.439	0.000 3	0.018	3.996	0.004 5	0.067	15.205
	FC/SP 12.5	石灰石	9	0.352	0.001 0	0.032	9.162	0.001 5	0.039	11.029
			10	0.673	0.002 5	0.050	7.448	0.002 9	0.053	7.944
	开级配均值			_	0.007 9	0.088 2	_	0.011 9	0.107 8	_
	密级配均值			—	0.002 0	0.043 1	_	0.003 3	0.057 0	—
	整体均值			_	0.004 0	0.058 2	_	0.006 2	0.073 9	_

表 5 FTM 测量数据的重复性和再现性统计

由表5可以看出:① FC-5混合料的标准差高于 其他混合料的标准差。由于FC-5沥青混合料是开级 配的,因此集料粒径的变化可能会导致较大的标准 差;② 测试站点2和10的相同设备和不同设备之间 的标准差几乎相同。当设备差异的方差在零附近波 动,表明设备之间的检测结果一致性较高。此外,测 试站点6和9的设备间*D*_{MPD}的变异系数最高,表明相 对于其他站点,测试站点6和9的*D*_{MPD}差异较大。

表6为使用FTM测量的可接受偏差范围,并将其 用于评估FTM所测量纹理的精度。以开级配混合料 和单设备精度为例,使用相同设备和操作员同时正确 操作的两个 D_{MPD}的最大可接受偏差范围不应超过 0.25 mm。但是,对于多机精度和开级配沥青混合料, 使用不同的设备和操作员正确进行两次测量D_{MPD}的 最大可接受偏差范围应不超过0.31 mm。此外,表7 为FTM设备的标准差平均值,这表明FTM设备的 最大可接受偏差范围分别为0.18 mm和0.22 mm。

表6 FTM 测量数据精度统计

级配类型	测试指标	标准差/mm	可接受偏差范围/mm
开级配	单机精度	0.089	0.25
	多机精度	0.109	0.31
密级配	单机精度	0.045	0.13
	多机精度	0.058	0.16

3.4 FTM测量影响因素分析

为了分析FTM测量的影响因素,对数据进行了 方差分析。使用线性模型以95%置信区间进行分析,并且P值(显著性水平)小于等于0.05的因素被认 为是有显著影响,结果如表8所示。

表7 FTM测量数据精度统计汇总

测试指标	标准差/	mm	可接受偏差剂	互围/mm			
单机精度	0.063	3	0.18				
多机精度	0.078	3	0.22				
表 8 FTM 测量的因素分析							
影响因素	SS	df	F	Р			
测试点	95.960	11	91.630	0			
设备	0.054	2	0.283	0.754			
平行样本量	0.028	2	0.144	0.866			
级配类型	84.440	2	331.166	0			
集料类型	0.267	1	3.782	0.039			

注:df为自由度;SS为平方和;当P>0.05时,表示该因素影响不显著。

由表8可以看出:①测试地点、级配类型和集料 类型对所测道路表面纹理有显著的影响;②使用不 同的FTM进行D_{MPD}测量以及使用同一个FTM进行 重复测量对最终获取的测量结果没有显著的影响。

4 结论

(1) FTM 是一种适合测量路面纹理信息的设备,其测量结果具有较高的重复性和重现性,所以 FTM可以精准地测量出沥青路面的D_{MPD}。

(2) FTM 测得的 D_{MPD}存在一定差异,开级配沥 青混合料铺筑的道路普遍具有较高的 D_{MPD}。

(3)通过线性回归模型的统计方法进行分析,结 果表明FTM和CTM测量结果存在较高的相关性, 所以FTM和CTM测量的DMPD可以相互替代。

(4) FTM测量中,测试地点、级配类型和集料类型对所测道路表面纹理有显著的影响。另外,使用不同的FTM进行*D*_{MPD}测量以及使用同一个FTM进行 重复测量对最终获取的测量结果没有显著的影响。

参考文献:

[1] BAQERSAD M, MOHAMMADAFZALI M, CHOUBANE B,

et al. Precision assessment of the Florida texture meter in hot mix asphalt[J]. Journal of Transportation Engineering, Part B:Pavements,2018,144(2):04018003.

- [2] LEE H, UPSHAW P, HOLZSCHUHER C, et al. Detection of asphalt concrete segregation using laser texturemeters[C]// Proceedings of the Transportation Research Board 93rd Annual Meeting, 2014.
- [3] SUN L, WANG Y Y. Three-dimensional reconstruction of macrotexture and microtexture morphology of pavement surface using six light sources-based photometric stereo with low-rank approximation[J]. Journal of Computing in Civil Engineering,2017,31(2):04016054.
- [4] BAQERSAD M, MOHAMMADAFZALI M, CHOUBANE B, et al. Application of laser macrotexture measurement for detection of segregation in asphalt pavements[J]. Journal of Transportation Engineering, Part B: Pavements, 2018, 144(3): 04018032.
- [5] 陈嘉颖,黄晓明,郑彬双,等.基于近景摄影测量技术的 沥青路面纹理实时识别系统[J].东南大学学报(自然科学 版),2019,49(5):973-980.
- [6] 周兴林,肖神清,刘万康,等.沥青路面表面纹理的多重 分形特征及其磨光行为[J].东南大学学报(自然科学版),
 2018,48(1):175-180.
- [7] LIU Q F, KAVANAGH L, SHALABY A, et al. Comparison of pavement texture measurements from a threedimensional profiler and a circular track meter at MnROAD test facilities[J].Transportation Research Record, 2016, 2591 (1):121-129.
- [8] PROWELL B D, HANSON D I. Evaluation of circular texture meter for measuring surface texture of pavements[J]. Transportation Research Record,2005,1929(1):88-96.
- [9] ABE H, TAMAI A, HENRY J J, et al. Measurement of pavement macrotexture with circular texture meter[J]. Transportation Research Record,2001,1764(1):201-209.
- [10] JACKSON N M, CHOUBANE B, HOLZSCHUHER C. Assessment of precision of circular track meter and dynamic friction tester[J]. Transportation Research Record, 2009,2093(1):118-127.
- [11] MATAEI B, ZAKERI H, ZAHEDI M, et al. Pavement friction and skid resistance measurement methods: A literature review[J]. Open Journal of Civil Engineering, 2016,6(4):537-565.
- [12] 王元元.沥青路面抗滑特性与其表面粗糙特性之关系研 究[D].南京:东南大学,2017.
- [13] 朱晟泽.基于路面宏观纹理的轮胎抗滑行为数值模拟研 究[D].南京:东南大学,2017.