DOI:10.14048/j.issn.1671-2579.2023.05.044

滨海地区海绵城市低影响开发技术优化利用研究

姜早龙^{1,2},张伟博¹,张志军³,金波¹,冯晓哲³

(1.湖南大学 土木工程学院,湖南 长沙 410082;2.湖南湖大建设监理有限公司,湖南 长沙 410082;3.中铁七局集团第三工程有限公司,陕西 西安 710032)

摘要:针对中国南方滨海地区降雨强度大、历时短且受潮汐顶托影响的特点,对适用于滨海地区海绵城市的LID(Low Impact Development,低影响开发)设施组合以及布设规模展开研究。通过建立研究区域SWMM(Storm Water Management Model,暴雨洪水管理模型),设计4种LID设施组合,模拟分析不同LID组合的径流控制效果以及潮汐作用下的管网负荷情况,并确定综合效果最佳的LID组合;以成本、径流总量控制率为优化目标建立多目标优化模型,运用NSGA-II算法对LID设施布设规模进行优化。结果表明:组合1在径流总量削减和缓解潮汐作用下的管网压力方面表现最优,在降雨重现期为2年和5年时,组合1在峰值流量削减和延缓峰现时间方面略次于其他组合,但在重现期10年降雨下反而更优;通过多目标优化方法得到了规模优化后的LID布设方案,该方案在满足控制目标的前提下相较于原方案节省了29.06%的建设成本。经过研究分析,得到适用于滨海地区且成本更低的LID设计方案。

关键词:滨海地区;海绵城市;低影响开发;SWMM;多目标优化;NSGA-II

中图分类号:U491 文献标志码:A

0 引言

随着中国城镇化建设的快速推进,城市可透水 面积占比迅速减少,而城市排水系统建设较为落后, 在气候愈发恶劣、暴雨天气频发的情形下,内涝已成 为中国许多城市面临的问题。滨海地区受到降雨强 度大以及海水潮位变化频繁等因素的影响,内涝问 题尤为突出。为了改善城市内涝问题,海绵城市理 念和LID技术广泛运用于城市雨洪调控中^[1]。同时 雨洪管理模型也广泛应用于海绵城市相关研究中, 如SWMM模型。

国内外许多学者对海绵城市和LID技术方面展 开了研究。汤伟真等^[2]利用SWMM模型分析了不同 LID措施的雨洪削减效果;Feng等^[3]研究了4种LID 设施及其组合在7个不同降雨事件下的有效性;郭振 清等^[4]探讨了渗水雨水井入渗流量的计算方法; Guerra等^[5]通过对比研究了不同渗透率土壤下LID 结构的径流捕获和污染去除能力;Saadatpour等^[6]以 减轻洪水和污染为目标对LID技术的布局进行了优 化;程树斌等^[7]研究了种植土-碎石绿化带的入渗特 征及其影响因素。部分学者针对中国一些特殊地区 的海绵城市建设进行了相关研究,例如西北干旱地 区和山区^[89],也有部分学者通过研究指出滨海地区 存在海绵城市建设效果不理想、排水系统不完善以 及部分管控措施不适用等问题^[10-12]。

根据上述研究,中国海绵城市建设主要以实现 水文目标为主,对建设所需要的高额成本还不够重 视,且滨海地区海绵城市研究中仍缺少对相关技术 的定量分析。本文基于沿海大中型城市降雨历时 短、强度高且排水管网普遍存在潮汐顶托等问题,建 立了研究区域的SWMM模型,并同时考虑径流控制 率和建设成本对LID技术进行了优化利用研究。

1 研究区域概况及特征

1.1 研究区域概况

妈湾跨海通道工程连接南山妈湾港区与宝安区

收稿日期:2022-11-25

作者简介:姜早龙,男,博士,副教授.E-mail:jiangzaolong70@163.com

基金项目:国家自然科学基金资助项目(编号:51308204)

大铲湾港区,终点与沿江高速大铲湾收费站、西乡大 道相接,线路全长8.05 km。研究区域为大铲湾段城 市主干道,双向六车道,位于宝安区大铲湾港区,属 深圳市西南部,为填海造陆区域,其地理位置如图1 所示。

图1 研究区地理位置

深圳市属亚热带海洋性季风气候,年平均降雨 量为2007.4 mm,最大年降雨量为2382 mm。该区 域降雨主要分布在夏、秋两个季节,且该阶段的降雨 量高达全年降水量的85%。降雨径流通过排水管网 直接排放至附近海域,因此该市因降雨导致的城市 洪涝灾害的可能性较大。

区域的原始地貌为滨海滩涂及滨海潮间带,后 经过人工大量挖砂堆填等土地修复改造工程后形成 现有地貌。区域地表土层主要为人工填土,其下为 淤泥层,人工填土层为多类填筑物混合填入,无明显 分层现象。各土层性质如表1所示。

1.2 南方滨海地区海绵城市特征

南方滨海地区由于环境条件特殊,其地区的海 绵城市建设与内陆其他城市有一定的区别,主要体 现在以下两个方面:

(1)降雨强度大、历时短。深圳作为中国南方滨 海城市,降雨强度非常大,年降雨量为中国内陆干旱

表1 土层性质

土层名称	渗透系数/ (cm • s ⁻¹)	透水性	状态	土的类型
素填土	5.79×10^{-6}	中等	松散−稍密	中软土
填砂	$5.79 imes 10^{-5}$	中等	松散−稍密	中软土
填石	3.47×10^{-4}	强	稍密中密	中硬土
冲填土	$5.79 imes 10^{-5}$	中等	松散稍密	中软土
淤泥	1.16×10^{-8}	极微	流塑-软塑	软弱土

地区的3~5倍,且多为短历时降雨,容易在短时间内 产生大量径流,导致内涝灾害。

(2)受潮汐作用影响。研究区域排放口连接附 近海域,海水潮位呈周期性变化,当潮位淹没排放口 时,雨水无法及时排放,容易导致地表积水严重,加 大内涝风险。

中国南方滨海地区多为较发达的城市,开发程 度高,对原有生态的破坏程度大;沿海地区普遍高程 较低,内陆腹地空间较少,导致城市调蓄能力有限。 故滨海地区的海绵城市建设相对于内陆普通城市会 面临更大的困难,也意味着需要付出更高的成本。

2 SWMM 模型建立

2.1 研究区域简介和概化

研究区域总面积0.089 km²,该区域下垫面类型 包括绿地、机动车道、非机动车及人行道路,分别占 面积38%、42%和20%,不透水范围占比较高,绿地 范围为普通绿化,且地势较其他下垫面更高,无调蓄 能力。根据研究区域的产汇流系统和管网,将研究 区域概化如下:将该区域划分为12个子汇水区,将排 水管网概化为12段排水管道,12个排水节点,2个排 水口,如图2所示。

图2 研究区域概化

2.2 雨型设计

为了模拟 LID 在降雨中的效果,需要根据深圳 当地降雨特点设计降雨事件。根据深圳市气象局基 于近几十年的降水资料发布的暴雨强度公式计算降 雨强度,如式(1)所示;采用芝加哥雨型,根据柴苑苑 等^[13]的研究取综合雨峰位置系数为0.388 32,峰现时 间在第47 min,设置暴雨历时为2h,由式(1)分别计 算重现期为2年、5年、10年的降雨序列。

$$i = \frac{8701(1+0.594P)}{(t+11.13)^{0.555}} \tag{1}$$

式中:*i*为设计暴雨强度(mm/min);*P*为设计重现期 (年);*T*为降水历时(min)。

2.3 模型参数设置和验证

SWMM模型的参数设置主要分为水文、水力和 水质3个模块,其中部分参数如汇水区面积、宽度、管 径和节点标高等可以根据相关资料或实际测量得 出。部分参数无法测量,需要参考参数率定结果。 其中曼宁系数、不渗透性洼地蓄水深度和最大下渗 速率对于模拟结果具有较大敏感性,需要谨慎选 取^[14-16]。采用修正的Morris筛选方法对参数进行了 敏感性分析,计算方法如式(2)。根据|S|值的大小,可 衡量参数的敏感性:若1>|S|≥0.2,则为高敏感性;若 0.2>|S|≥0.05,则为中敏感性^[17]。

$$S = \frac{1}{n} \sum_{i=0}^{n-1} \frac{(Y_{i+1} - Y_i)/Y_0}{(P_{i+1} - P_i)/100}$$
(2)

式中:S为敏感性因子; Y_0 为初始参数的输出值; Y_i 为参数第i次变动对应的输出值; P_i 为参数第i次变 动相对于初始值的百分比;n为变动次数。

选择重现期为5年的降雨事件,分别计算各参数对 径流总量和径流峰值的|S|值。经计算得出:对于径流总 量,最大下渗速率的|S|为0.2468,即高敏感性,最小下渗 速率的|S|值为0.0622,即中敏感性;对于径流峰值,不透 水区和透水区曼宁系数|S|值为0.0884和0.0994,最大 和最小下渗速率|S|值为0.1462和0.0737,皆为中敏感 性。对于这些参数的取值需谨慎选取。

采用研究区域2020年6月26日和8月5日的两 场降雨数据率定参数取值,最终参数率定值如表2所 示,模拟结果与实测结果对比如图3所示。采用纳什 效率系数(C_{NSE})来验证模型的准确性,计算方法如式 (3)所示。对于SWMM模型一般认为C_{NSE}值大于 0.5时表示模型可以接受^[18]。经计算得到两场降雨的 C_{NSE}值分别为0.8139、0.8796,表明模型能够准确反 映研究区域的降雨和径流情况。

$$C_{\rm NSE} = 1 - \frac{\sum_{t=1}^{T} (Q_0^t - Q_m^t)^2}{\sum_{t=1}^{T} (Q_0^t - \bar{Q}_0)^2}$$
(3)

式中: Q_0 为观测值; Q_m 为模拟值;Q'为第t时刻的某个值; \bar{Q}_0 为观测值的总平均值。

花园4种LID设施。非机动车道和人行道可以采用

16:00 16:30 17:00 17:30 18:00 18:30 19:00

时刻

(b) 2020年8月5日

表2 参数率定结果

「 项目 」 曼	不渗透性	渗透性曼	管道曼	渗透性洼地蓄	不渗透性洼地	最大下渗速率/	最小下渗速率/	下渗衰减系
	曼宁系数	宁系数	宁系数	水深度/mm	蓄水深度/mm	$(mm \cdot h^{-1})$	$(mm \cdot h^{-1})$	数 $/(h^{-1})$
取值范围	0.005~0.02	$0.05 \sim 0.45$	0.005~0.02	0.1~2.5	2~8	25~100	0.1~10	2~7
率定值	0.011	0.13	0.012	4.89	1.27	25	3.34	4

2.4 LID 措施设计

根据研究区域的条件及LID设施的适用性,研究区域可采用透水铺装、下沉式绿地、植草沟和雨水

图 3 SWMM 模型模拟结果对比

径流/(m³ · s⁻¹)

0.6

0.4

0.2

0

262

施呈线性布置,为了保证设施的连续性,尽量在同一 布置范围内采用一种LID设施。在研究区域设计了 4种组合方案,如表3所示。

表3 LID设施组合设计

方案编号	设施组合方案
组合1	透水铺装(1.75 hm ²)+雨水花园(0.62 hm ²)
组合2	透水铺装(1.75 hm ²)+下沉式绿地(0.62 hm ²)
组合3	透水铺装(1.75 hm ²)+植草沟(0.62 hm ²)
组合4	透水铺装(1.75 hm ²)+植草沟(0.37 hm ²)+
	雨水花园(0.25 hm ²)

各项 LID 设施参数可参考 SWMM 模型用户手册、其他工程实践以及相关文献来确定,各参数取值如表4所示。根据设计的各组合方案在 SWMM 模型 各子汇水区中添加对应的 LID 设施。

/### P		单位	透水	雨水	植草	下沉式
萡构层	麥奴		铺装	花园	沟	绿地
	蓄水深度	mm	50	150	200	150
主声日	表面粗糙系数		0.011	0.13	0.12	0.13
衣囬层	表面覆盖系数		0	0.9	0.6	0.9
	表面坡度	%	1.0	0.4	1.2	0.4
	厚度	mm	150	—	_	—
	孔隙比		0.15	_	_	_
路面层	不渗透表面系数		0	_	_	_
	渗透性	mm/h	250	_	_	_
	堵塞因子		0	_	_	_
	厚度	mm	150	600	_	250
	孔隙比		0.3	0.5	_	0.5
土壤层	产水能力		0.2	0.2	_	0.2
	导水能力	mm/h	0.5	2.0	_	2.0
	吸水头	mm	3.5	3.5	_	3.5
蓄水层	高度	mm	300	200	_	—
	孔隙比		0.5	0.6	_	—
	渗透速率	mm/h	10.0	1.5	_	_
	堵塞因子		0	0		_

表4 LID 措施参数设置

3 模拟分析

3.1 LID 组合方案径流控制效果分析

为了比较各个方案的径流控制效果,在重现期 分别为2年、5年和10年,降雨历时为2h的情景下分 别对未设置LID设施和4个组合进行模拟,模拟结果 如表5所示,并根据在3种重现期降雨下产生的径流 量计算4个组合在不同重现期降雨下的径流削减率, 结果如图4所示。

表5 径流模拟结果

重现期/	加入	降雨量/	峰值流量/	峰现时间/
年	组合	mm	$(m^3 \cdot s^{-1})$	min
2	无LID	82.13	2.75	47
	组合1	82.13	1.98	49
	组合2	82.13	1.95	49
	组合3	82.13	1.85	50
	组合4	82.13	1.91	50
	无LID	98.60	3.40	47
	组合1	98.60	2.51	49
5	组合2	98.60	2.48	49
	组合3	98.60	2.35	50
	组合4	98.60	2.46	50
10	无LID	111.06	3.90	47
	组合1	111.06	2.88	50
	组合2	111.06	2.94	49
	组合3	111.06	2.83	49
	组合4	111.06	2.87	49

图4 LID 措施组合径流控制效果对比

由表5可知:4种LID设施组合方案都具有较好 的峰值流量削减效果,且峰现时间延缓了2~3 min。 当降雨重现期为2年和5年时,峰值流量削减和峰现 时间延缓方面组合1相对其他组合较差;当降雨重现 期为10年时,峰值流量削减效果最好的仍是组合3, 组合1和组合4略次于组合3,洪峰出现最迟的是组 合1,其他组合洪峰出现时间略微早于组合1。从峰 值削减和延缓峰现时间方面来看,组合1更能在高强 度降雨下表现出较好的效果,分析原因为:植草沟和 下沉式绿地的调蓄容积主要分布在接近地表的表面 层和土壤层,而雨水花园层数较多,调蓄容积主要分 布在较深的土壤层和蓄水层,由于雨水下渗需要时 间,故植草沟和下沉式绿地在低强度降雨下更能直 接削减峰值流量和延缓峰现时间;当降雨强度较高 且超出植草沟和下沉式绿地的调蓄能力时,雨水花 园具有更大调蓄容积的优势便体现出来。

由图4可知:在各降雨重现期下径流削减效果最 好的是组合1,且较其他组合具有明显优势,组合3在 各重现期下径流总量削减效果都是最差的;当降雨 重现期为10年时,组合2的总量削减效果出现明显 下滑,且落后于组合4。

3.2 潮汐影响下LID运行效果分析

通过查询研究区域附近港口近几年潮汐水位数据,采用最不利条件进行分析,近几年最高潮汐水位 出现在2020年8月20日,为291 cm,故选用该潮汐水 位进行模拟分析。

3.2.1 检查井水深分析

选取两个位于中、下游的节点J3和J10进行模拟 分析(图5、6),从而推断潮汐作用对管网节点负荷的 影响。

由图 5 可知:检查井 J3 和 J10 在潮汐顶托作用 下,最大水深显著增加,且在整个降雨过程中两个 检查井的平均水深也显著提升,证实了潮汐顶托作 用下检查井的负载显著增大;由图 6 可知:LID 的使 用使节点最大水深恢复为自由出流状态甚至更低, 而平均水深略高于自由出流状态,4种组合最大水 深相近,而组合1平均水深明显低于其他组合。

3.2.2 排放口负荷分析

在 SWMM 模型中设置潮汐水位序列,对出水口 情况进行模拟,结果如表6所示。

由表6可知:在潮汐作用下出水口的出流量会增加,出水口负荷会显著增加,且采用LID设施减少了 排放口20%~24%的出水量,能够缓解潮汐作用带 给排水管网的压力;在4个LID设施组合中,组合1 的出流量最小,其次是组合2,再次是组合4,最差的 是组合3。

综合来看,组合1在径流总量削减和缓解潮汐作 用下管网负荷方面显著优于其他组合;在高强度降 雨下峰值削减和延缓峰现时间方面也是最优。故透 水铺装+雨水花园组合最优。

手頂地 /左		出流	出流量/L				
里咒别/平	组合 ——	潮汐作用	无潮汐作用				
	无LID	7.207×10^{6}	6.226×10^{6}				
	组合1	5.461×10^{6}	4.482×10^{6}				
2	组合2	5.552×10^{6}	4.572×10^{6}				
	组合3	5.604×10^{6}	4.624×10^{6}				
	组合4	5.594×10^{6}	4.612×10^{6}				
	无LID	8.610×10^{6}	7.619×10^{6}				
	组合1	6.590×10^{6}	5.611×10^{6}				
5	组合2	6.682×10^{6}	5.701×10^{6}				
	组合3	6.732×10^{6}	5.751×10^{6}				
	组合4	6.726×10^{6}	5.743×10^{6}				
	无LID	9.673×10^{6}	8.673×10^{6}				
	组合1	7.576×10^{6}	6.566×10^{6}				
10	组合2	7.667×10^{6}	6.657×10^{6}				
	组合3	7.708×10^{6}	6.696×10^{6}				
	组合4	7.714×10^{6}	6.702×10^{6}				

表6 排放口出流量对比

4 优化模型设计及实现

4.1 优化模型构建

已知透水铺装和雨水花园两种LID措施组合的 雨洪控制效果最优,为了确定如何布设两种LID措 施能够满足沿海地区海绵城市建设方案既能达到低 影响开发的目的又经济实惠,在建立模型的基础上, 还需利用多目标优化的方法寻找出多目标最优方 案。以各汇水分区中布设透水铺装和雨水花园的面 积为优化模型的控制变量,同时以年径流总量控制 率和LID措施总建设费用为优化目标,求得LID措施 优化方案。优化模型如图7所示。

图7 LID 措施优化模型

该优化模型需要运用多目标优化算法求解,由 于 NSGA-Ⅲ算法具有运行速度快、收敛性好等优 点^[19],在解决许多工程类多目标优化问题中得到广 泛使用,因此选用 NSGA-Ⅲ算法进行目标求解。

4.1.1 确定目标函数

年径流总量控制率可以根据容积法中设计调蓄 容积与设计降雨量之间的关系反向推算求得,计算 方法如式(4)所示:

$$V = 10 H \phi F \tag{4}$$

式中:V为调蓄容积(m³);H为设计降雨量(mm);φ 为综合径流系数,由各下垫面的径流系数根据面积 加权平均求得;F为总面积(hm²)。

本研究区域的生物滞留设施为在机动车与非机 动车道分隔绿化带上设置的雨水花园;且以下渗为 主,无上部蓄水空间的透水铺装仅参与径流系数的 计算,则研究区域的调蓄容积与雨水花园的关系如 式(5)所示:

$$V = \sum_{i=1}^{N} (h + h_1 e_1 + h_2 e_2) s_{Ri}$$
(5)

式中:h为存水深度(m); h_i 为各土层深度(m); e_i 为各 土层空隙率; s_{Ri} 为第i个子汇水区雨水花园的面积 (m²);N为子汇水区个数,取12。

结合上式计算求得设计降雨量,然后根据深圳 市年径流总量控制率与设计降雨量的关系曲线(图 8),可以求得目标函数值*f*₁。

图 8 年径流总量控制率与设计降雨量关系曲线

在估算总成本费用时一般采用全过程生命周期 成本来估算,但是中国的海绵城市建设还不够成熟, 工程案例较少,缺乏数据积累,对于LID措施在运营 与维护方面费用的估算参差不齐,而且在不同地区 的成本费用估算有较大差异,因此本次研究仅考虑 建设成本。对于透水铺装与雨水花园两种LID措施 的建设成本,可以通过该LID措施的单位面积建设 费用与建设面积相乘求得,根据选取的LID措施参 数和项目实际情况,透水铺装与雨水花园的建设费 用分别为300元/m²和1000元/m²,则总建设成本费 用函数如式(6)所示:

$$f_2 = \sum_{i=1}^{N} (C_{\rm P} s_{\rm Pi} + C_{\rm R} s_{\rm Ri})$$
(6)

式中:*s*_{Pi}为第*i*个汇水分区中设置透水铺装的面积 (m²);*C*_P、*C*_R为单位面积透水铺装与雨水花园的建设 成本(元)。

4.1.2 约束条件

在研究区域中,各种 LID 措施的建设面积是有限的,雨水花园应该设置在绿地中,透水铺装则应在 非机动车道和人行道范围内设置,根据设施最大及 最小面积约束得到约束条件如式(7)所示:

$$\begin{cases} A_{\operatorname{Pimin}} \leqslant s_{\operatorname{Pi}} \leqslant A_{\operatorname{Pimax}} \\ A_{\operatorname{Rimin}} \leqslant s_{\operatorname{Ri}} \leqslant A_{\operatorname{Rimax}} \end{cases}$$
(7)

式中:A_{Pimax}、A_{Pimin}为第*i*个汇水分区可以设置透水铺装面积的最大、最小值(m²);A_{Rimax}、A_{Rimin}为第*i*个汇水分区可以设置雨水花园面积的最大、最小值(m²)。 4.2 优化分析

在建立多目标优化模型基础上,根据建立的目标函数和约束条件编写NSGA-II算法程序,选取种群个数为300、遗传代数为200,经过优化计算后得出Pareto最优解集,其解集由一群非支配个体组成,每个个体都代表着达到相应径流控制目标值所需建设成本最少的LID措施方案,可供决策者选择,这些个体构成了一条Pareto最优曲线,如图9所示。由图9可知:当年径流总量控制率达到83.0%时,若一味提高径流控制目标,会导致总建设成本迅速增加。

图9 Pareto最优曲线

本文根据《深圳市海绵型道路建设技术指引(试行)》中的规定,要求年径流总量控制率达到65%。 根据上述要求在Pareto最优解集中选取一个优化方案,并与原方案进行对比,两种方案的设计规模如表 7所示。原方案为了达到更高的径流控制目标,直接 采用两种LID措施100%覆盖可布设区域的方案,并 没有考虑成本。由图9可知:原方案并未在Pareto最 优曲线上,证明存在同样达到85%年径流总量控制 率而成本更低的方案,存在很大的优化空间;优化方 案在同样满足径流控制目标的情况下,相对于原方 案节省了29.06%的成本,共331.7万元。

表7 LID 措施布设方案

	原方案		优化方案		
子汇水区	透水铺装/	雨水花园/	透水铺装/	雨水花园/	
	m^2	m^2	m^2	m^2	
1	865	305	560	230	
2	850	300	550	230	
3	3 245	1 150	2 110	880	
4	3 230	1 145	2 100	870	
5	970	340	630	260	
6	955	340	620	260	
7	770	275	510	210	
8	770	270	500	200	
9	1 870	660	1 210	500	
10	1 990	705	1 290	540	
11	930	330	600	250	
12	1 010	360	660	270	
目标 f1/%	85		75		
函数 f ₂ /万元	1 14	41.4	809.7		

本文根据优化方案与原方案中两种LID措施的 规模,在建立SWMM模型中设置LID措施,并在不 同降雨重现期和潮汐作用下进行研究区域的产汇流 模拟,对比两种方案在较高降雨强度下的雨洪调控 效果,结果如图10所示。

由图 10 可见:优化方案与原方案在潮汐作用和 不同重现期降雨下都有较好的径流削减效果,优化 方案与原方案在径流控制作用方面相差不大,仅在 径流峰值削减方面有微弱的劣势,但需要的建设成 本更少。

5 结论

本文以妈湾跨海通道工程第二标段地面道路海 绵城市工程为例,通过建立SWMM模型模拟分析在 潮汐作用下LID措施组合在不同重现期降雨中的径 流控制效果,建立一种LID措施优化模型,采用 NSGA-II算法优化LID措施规模。得到以下结论:

(1)4种LID设施组合中,组合1(雨水花园+透水铺装)在重现期为2年、5年、10年降雨下的径流总

图 10 LID 措施布设前后效果对比

量削减效果都是最好的;在强度较低的降雨下组合1 峰值削减和延迟峰现时间能力较弱,但在强降雨下 表现最为出色。

(2)潮汐顶托作用下,系统总出流量和节点水深 会显著增加,严重影响排水系统正常运行;LID设施 的使用能够减少潮汐顶托作用增加的出流量,减轻 潮汐给排水管网带来的负荷。潮汐作用下组合1的 节点平均水深最低,且出流量最少,能够更好地缓解 潮汐影响。

(3) 传统设计方法得到的海绵城市建设方案存 在较大优化空间,采用多目标优化方法对LID设施 的规模进行优化,得到的优化方案在满足径流控制 目标的情况下,相对于原方案节省了29.06%的成 本,共331.7万元。

参考文献:

- [1] 徐多.基于SWMM的海绵校园径流控制效果评估:以萍乡 市北星小学为例[J].水利水电技术,2019,50(7):32-39.
- [2] 汤伟真,任心欣,丁年,等.基于SWMM的市政道路低影响开 发雨水系统设计[J].中国给水排水,2016,32(3):109-112.

- [3] FENG M Y, JUNG K, LI F P, et al. Evaluation of the main function of low impact development based on rainfall events [J]. Water, 2020, 12(8): 2231.
- [4] 郭振清,张春会,关彤军,等.海绵城市渗水雨水井新构造及入渗流量计算方法[J].中外公路,2019,39(1):8-12.
- [5] GUERRA H B, KIM Y. Understanding the performance and applicability of low impact development structures under varying infiltration rates[J]. KSCE Journal of Civil Engineering, 2020, 24(5): 1430-1438.
- [6] SAADATPOUR M, DELKHOSH F, AFSHAR A, et al. Developing a simulation-optimization approach to allocate low impact development practices for managing hydrological alterations in urban watershed[J]. Sustainable Cities and Society, 2020, 61:102334.
- [7] 程树斌,关形军,张春会,等.海绵城市道路种植土-碎石 绿化带的雨水入渗[J].中外公路,2018,38(2):13-19.
- [8] 赵梦圆,王建龙,苏选军,等.西北干旱地区海绵城市建 设途径探讨[J].环境工程,2019,37(7):18-24.
- [9] 李舜,辜俊波,邓金运.基于MIKE-FLOOD模型的甘露电厂 区域防洪情势分析[J].水科学与工程技术,2020(6):48-52.
- [10] 王泽阳. 滨海地区市政道路海绵城市设计的反思与优化[J]. 中国给水排水, 2020, 36(20):133-136.
- [11] 熊林,李晓丽,唐宇.中新天津生态城海绵城市规划建设 实践与思考[J].中国给水排水,2018,34(12):1-4.
- [12] 邹芳睿,宋昆,叶青,等.北方滨海地区海绵城市建设探索与实践:以中新天津生态城为例[J].给水排水,2017, 53(11):38-43.
- [13] 柴苑苑,孙翔.深圳市流域暴雨雨型及变化趋势分析[J]. 水利技术监督,2018,26(6):140-142.
- [14] 马萌华.基于模糊综合评价的海绵城市 LID 措施综合效 能评价体系研究[D].西安:西安理工大学,2019.
- [15] 李春林,胡远满,刘淼,等.SWMM模型参数局部灵敏度 分析[J].生态学杂志,2014,33(4):1076-1081.
- [16] 曾家俊,麦叶鹏,李志威,等.广州天河智慧城SWMM参 数敏感性分析[J].水资源保护,2020,36(3):15-21.
- [17] LENHART T, ECKHARDT K, FOHRER N, et al. Comparison of two different approaches of sensitivity analysis[J]. Physics and Chemistry Earth, parts A/B/C, 2002,27(9/10):645-654.
- [18] ZHAO D Q, CHEN J N, WANG H Z, et al. GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach: A case study in Macau [J]. Environmental Earth Sciences, 2009, 59(2):465-472.
- [19] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.