DOI:10.14048/j.issn.1671-2579.2023.05.012

# 改性沥青加铺层抗反射裂缝室内小梁试验

#### 张芷英,解建光,张冰洋,朱毅伟,赵勇

(南京航空航天大学 民航与飞行学院,江苏南京 210016)

**摘要:**针对机场水泥道面进行沥青层加铺后容易产生面层反射裂缝的缺点,采用三点弯曲室内小梁试验探究改性沥青 -水泥复合梁在不同底层裂缝类型下的反射裂缝的产生和发展过程,评价不同改性沥青混合料抵抗面层反射裂缝的能 力。结果表明:在三点弯曲加载模式下,十字裂缝和横缝的反射裂缝发展过程相似、竖缝对反射裂缝的产生影响较小; NRP改性沥青混合料较普通 SBS改性沥青具有更好的抗反射裂缝性能。

关键词:路面工程;机场道面;沥青加铺层;面层反射裂缝;复合梁弯曲性能

**中图分类号:**U416.2 文献标志码:A

## 0 引言

中国大批机场建于20世纪末,大部分水泥混凝 土道面逐渐接近设计使用年限,产生裂缝、坑槽、脱 空等病害[1]。为了提高道面使用性能,延长道面使 用寿命,迫切需要对机场旧混凝土道面结构进行补 强或者功能恢复;加铺沥青层是目前较为有效的解 决办法。沥青加铺层出现的病害主要分为变形、裂 缝两大类[2],其中裂缝类病害尤其是反射裂缝对道 面结构危害极大[3],且更容易在后续服役期间产生 二次大面积病害<sup>[4]</sup>。目前已有朱林等<sup>[5]</sup>、Li<sup>[6]</sup>多位 学者对沥青路面裂缝形成机理进行研究,并且有多 位学者对沥青混合料进行抗裂性分析: Zhang 等<sup>[7]</sup> 研究了沥青混合料在间接拉伸试验(IDT)中的微 裂纹模式、裂纹萌生和扩展以及能量消耗;Li等<sup>[8]</sup> 采用指标断裂能评价了掺加钢渣微粉的沥青混合 料的抗裂性能;Yang等<sup>[9]</sup>采用三点弯曲小梁试验 评价了硅藻土改性沥青混合料的抗裂性能;Cheng 等<sup>[10]</sup>采用间接拉伸试验评价了掺加硅藻土和玄武 岩纤维的沥青混合料的抗裂性能;王雪莲等[11]通过 建立大粒径透水性沥青混合料层(LSPM)离散元模 型,研究了半刚性沥青路面产生反射裂缝的机理, 分析了裂缝尖端处的应力场以及LSPM层内细观

结构对裂尖应力的作用; 栾利强<sup>[12]</sup>以疲劳断裂力学 理论和材料试验为基础, 对半刚性基层沥青路面裂 缝的扩展行为进行了系统研究。目前国内外学者对 于沥青混合料的裂缝成因及开裂特性已经有一定认 识, 但对加铺层反射裂缝的研究相对较少, 因此本文 拟用三点弯曲室内小梁试验探究改性沥青-水泥复 合梁在不同底层裂缝类型下的反射裂缝的产生和发 展过程, 揭示不同类型的底层裂缝对沥青加铺层的影 响, 为优化沥青加铺层结构提供依据。

### 1 原材料与试验方法

#### 1.1 试验原材料

试验用水泥为普通硅酸盐 P.O42.5 水泥,细骨料 为 II 级配区中砂,粗骨料为最大粒径 16 mm 的机制 玄武岩碎石;试验用沥青为双龙牌 70<sup>#</sup>道路石油沥青, 纤维为木质素纤维,矿粉为石灰岩矿粉,试验用改性 剂为 NRP 改性剂及 SBS 改性剂。

#### 1.2 试验配合比

根据《普通混凝土配合比设计规程》(JGJ 55—2011)中规定进行反复试配后,最终确定应用于试验的C40水泥混凝土配合比如表1所示。

《公路沥青路面施工技术规范》(JTG F40—2004) 规定,采用马歇尔试验方法确定 SMA-13 沥青混合料

收稿日期:2022-12-20

基金项目:南京航空航天大学研究生开放基金项目(编号:kfjj20200730) 作者简介:张芷英,女,硕士研究生.E-mail:908180834@qq.com 最佳油石比为6%、矿粉掺量为8%、纤维掺量为0.3%, 设计空隙率为3.6%,沥青混合料级配如表2所示。

|       | 表1 水泥 | 混凝土配合比 | $kg/m^3$ |
|-------|-------|--------|----------|
| 水泥    | 水     | 细集料    | 粗集料      |
| 429.4 | 210   | 616.2  | 1 144.4  |

表2 SMA-13沥青混合料级配

| 沥青混合   | 通过下列筛孔(mm)的质量百分率% |      |      |      |      |      |      |      |      |       |
|--------|-------------------|------|------|------|------|------|------|------|------|-------|
| 料类型    | 16                | 13.2 | 9.5  | 4.75 | 2.36 | 1.18 | 0.6  | 0.3  | 0.15 | 0.075 |
| SMA-13 | 100               | 91.9 | 71.6 | 28.6 | 21.8 | 18.7 | 15.9 | 13.4 | 12.0 | 10.0  |

#### 1.3 试验方案

为模拟实际水泥路面上各类型裂缝,拟对水泥 层预设3种裂缝,沥青-水泥复合梁示意图见图1。



#### 图1 复合梁结构示意图(单位:mm)

本试验复合小梁试件由 300 mm×300 mm×50 mm的水泥混凝土板和 300 mm×300 mm×70 mm的 沥青板切制后黏结而成,其中,沥青层与水泥层采用 环氧树脂黏结,水泥层裂缝贯通,复合小梁具体尺寸 及数量如表 3 所示。底层为横缝时,水泥层由 2 块 150 mm×50 mm×25 mm的水泥块拼接而成;底层 为十字缝时,水泥层由 4 块 150 mm×25 mm×25 mm的水泥块拼接而成;底层为竖缝时,水泥层由 2 块 300 mm×25 mm×25 mm的水泥块拼接而成。

| 衣 夏口米八寸 | 表3 | 复合梁尺寸 |
|---------|----|-------|
|---------|----|-------|

| 试件种类           | 裂缝类型 | 试件个<br>数/个 | 试件高<br>度/mm | 试件长<br>度/mm     | 试件宽<br>度/mm  |
|----------------|------|------------|-------------|-----------------|--------------|
| NRP改性沥<br>青混合料 | 横缝   | 4          |             |                 |              |
|                | 十字缝  | 4          | $50\pm2.0$  | $300\!\pm\!2.0$ | $50\pm2.0$   |
|                | 竖缝   | 4          |             |                 |              |
| SBS改性沥<br>青混合料 | 横缝   | 4          |             |                 |              |
|                | 十字缝  | 4          | $50\pm2.0$  | $300 \pm 2.0$   | $50 \pm 2.0$ |
|                | 竖缝   | 4          |             |                 |              |

采用液压伺服试验机进行三点弯曲试验,加载

示意图如图2所示,试件层间粘贴应变片用于测量小 梁中部纵向应变。为模拟静压时的状态,试验采用1 mm/min的位移加载控制方式,试验温度为15℃,试 验终止条件为跨中承受荷载值降低至0。



图2 三点弯曲试验加载示意图(单位:mm)

## 2 复合梁力学响应分析

通过电液伺服系统对沥青-水泥复合梁进行三 点加载,加载过程中裂缝发展如图3所示。当复合梁 竖向挠度达到3.0 mm时,复合梁承载荷载达到峰值, 开始观察到跨中有细微裂缝产生,而后承载荷载进 入下降段;当复合梁竖向挠度达到6.3 mm时,复合梁 承载荷载进一步下降,此时可明显观察到一条跨中 裂缝;当复合梁竖向挠度达到10.0 mm时,复合梁承载 能力接近极限状态,裂缝进一步扩张且贯通整个沥青 层;继续加载,复合梁承载力下降为0,试件断裂。



(a) 竖向挠度为3.0 mm



(b) 竖向挠度为6.3 mm



(c) 竖向挠度为10.0 mm

图3 裂缝发展图(以带横缝的SBS复合梁为例)

试验通过外接应变箱采集复合梁三点弯曲试验 数据,剔除异常数据后,绘制其跨中荷载-位移曲线 及跨中纵向应变-时间曲线,研究了不同底层裂缝类 型及两种改性剂对沥青层承载状态的影响,结果见 图4~7,峰值荷载及最大竖向挠度见表4。



图4 荷载-跨中竖向挠度曲线

从图4可知:① 当底面为横缝时,复合梁会先以 较快速度达到峰值荷载,而后沥青层进入2min左右 的屈服阶段,随后复合梁进入破坏阶段承受荷载值 缓慢下降,最终复合梁完全破坏,荷载值下降为0;② 当底面为竖缝时,复合梁迅速达到峰值荷载随后水 泥层发生脆性破坏,而后复合梁承载力小幅度回弹 随后沥青层进入2min左右的屈服阶段,接下来复合 梁进入破坏阶段承受荷载值缓慢下降,最终复合梁 完全破坏,荷载值下降为0;③当底面为十字缝时,复 合梁荷载-挠度曲线与横缝相似,先以较快速度达到 峰值荷载,而后沥青层先后经历屈服阶段和破坏阶 段。比较复合梁底层为横缝和十字缝的荷载-位移 曲线可知,十字缝中的横缝为主要破坏缝;④比较复 合梁破坏时的跨中挠度,底面为横缝时,NRP复合梁 为12.04 mm、SBS复合梁为11.50 mm,底面为十字缝 时, NRP 复合梁为 11.46 mm、SBS 复合梁为 10.47 mm,底面为竖缝时,NRP复合梁为13.55 mm、SBS 复合梁为12.52 mm,两种材料的跨中挠度:竖缝>横 缝>十字缝;比较复合梁破坏时的峰值荷载,底面为 横缝时,NRP复合梁为0.208 kN、SBS复合梁为 0.185 kN,底面为十字缝时,NRP复合梁为0.185 kN、 SBS复合梁为0.166 kN,底面为竖缝时沥青层受力屈 服段峰值荷载NRP复合梁为0.202 kN、SBS复合梁 为0.182 kN,两种材料破坏时的峰值荷载:横缝~竖 缝>十字缝。



图5 复合梁荷载-跨中竖向挠度曲线

从图 5 可得:①相同裂缝类型时,NRP复合梁和 SBS复合梁荷载-挠度曲线形状和走势相似,NRP复 合梁破坏时的最大荷载大于 SBS复合梁破坏时的最 大荷载,且NRP复合梁最终破坏时的跨中挠度大于 SBS复合梁最终破坏时的跨中挠度;②相同裂缝类 型时,在达到峰值荷载前,SBS和NRP复合梁承载能 力相似;在峰值荷载后,复合梁进入屈服段,此时同 一跨中挠度时 NRP复合梁承载的荷载更大,承受同 一荷载时NRP复合梁跨中挠度更小,说明NRP改性 剂对于沥青混合料进入屈服阶段后的抗反射裂缝能 力增强效果更佳;③比较复合梁的荷载--挠度曲线包 围面积,底面为横缝时NRP复合梁为SBS复合梁的 1.15倍,底面为十字缝时NRP复合梁为SBS复合梁 的1.34倍,底面为竖缝时NRP复合梁为SBS复合梁 的1.19倍。相同裂缝类型时,NRP复合梁的荷载--挠 度曲线包围面积大于SBS复合梁,可以看出NRP改 性剂对于带有各种类型初始裂缝的复合梁弯曲韧性 的改善效果更好。



图6 跨中纵向应变-时间曲线

从图 6 可得:① 不同裂缝类型的复合梁跨中纵向应变-时间曲线形状和走势相似,不同裂缝类型的 NRP复合梁和 SBS复合梁均呈现出跨中纵向应变增 长速率随时间的增长而逐渐变大的规律。在4 min 过后复合梁位移达到4 mm,裂缝发育迅速,复合梁跨 中纵向应变片先后失效;② 相同时间,复合梁底面跨 中纵向应变增长速率亦为:竖缝<横缝<十字缝;且复合梁底面跨 中纵向应变增长速率亦为:竖缝<横缝<十字缝;③ 当底面为十字缝时,其跨中纵向应变-时间与横缝更 为相似,再次证明此加载方式下十字缝中的横缝为 主要破坏缝。

从图7可得:同一时间时,NRP复合梁和SBS复合梁的跨中纵向应变值相近、应变增长速率相似。



图7 复合梁跨中纵向应变-时间曲线

表4 复合梁峰值荷载及最大竖向挠度

| 改性剂种类 | 裂缝类型 | 峰值荷载/kN | 最大竖向挠度/mm |
|-------|------|---------|-----------|
|       | 横缝   | 0.208   | 12.04     |
| NRP   | 十字缝  | 0.185   | 11.46     |
|       | 竖缝   | 0.520   | 13.55     |
|       | 横缝   | 0.185   | 11.50     |
| SBS   | 十字缝  | 0.166   | 10.47     |
|       | 竖缝   | 0.480   | 12.52     |

此外从纵向应变-时间曲线中可以看出应变片失效 时记录到的NRP复合梁的应变值略大于SBS复合 梁,说明此时NRP改性沥青混合料层裂缝张开速率 略小于SBS改性沥青混合料层,从而再次证明NRP 改性剂对于沥青混合料进入屈服阶段后的抗反射裂 缝能力增强效果更佳。

根据《公路工程沥青及沥青混合料试验规程》 (JTG E20-2011),由式(1)、(2)、(3)计算得到不同 底层裂缝类型下复合梁沥青层的弯拉强度、最大弯 拉应变、弯曲劲度模量,结果如表5所示。

$$R_{\rm B} = \frac{3 \times L \times P_{\rm B}}{2 \times b \times h^2} \tag{1}$$

$$\epsilon_{\rm B} = \frac{6 \times h \times d}{L^2} \tag{2}$$

$$S_{\rm B} = \frac{R_{\rm B}}{\epsilon_{\rm B}} \tag{3}$$

式中: $R_{\rm B}$ 为试件破坏时的抗弯拉强度(MPa); $\epsilon_{\rm B}$ 为试 件破坏时的最大弯拉应变( $10^{-6}$ ); $S_{\rm B}$ 为试件破坏时的 弯曲劲度模量(MPa);b为跨中断面试件的宽度 (mm);h为跨中断面试件的高度(mm);L为试件的 跨径(mm); $P_{\rm B}$ 为试件破坏时的最大荷载(N);d为试 件破坏时的跨中挠度(mm)。

表 5 不同裂缝类型复合梁弯拉强度、最大弯拉 应变、弯曲劲度模量

| 裂缝  | 弯拉强度/MPa |      | 最大弯拉应变/10-6 |        | 弯曲劲度模量/MPa |       |
|-----|----------|------|-------------|--------|------------|-------|
| 类型  | NRP      | SBS  | NRP         | SBS    | NRP        | SBS   |
| 横缝  | 2.30     | 2.13 | 31 354      | 29 948 | 73.48      | 71.16 |
| 十字缝 | 2.13     | 1.91 | 29 944      | 27 266 | 71.41      | 70.14 |
| 竖缝  | 2.30     | 2.10 | 35 286      | 32 604 | 65.29      | 64.31 |

从表5可以看出:不同裂缝类型时,NRP复合梁沥 青层的弯拉强度、最大弯拉应变、弯曲劲度模量均略大 于SBS复合梁,说明在一定程度上NRP改性剂对提高 沥青混合料抵挡反射裂缝的能力优于SBS改性剂。

## 3 结论

(1) 在三点弯曲加载模式下,底面为十字缝和横 缝的反射裂缝发展过程相似:荷载-挠度曲线走势相 似、十字缝的峰值荷载略小于横缝、最终破坏时的竖 向挠度略小于横缝,推得十字裂缝中横缝为主要破 坏裂缝,且横缝的产生对复合梁整体的结构强度影 响较大;底面为竖缝时,具有明显的水泥破坏段,对 于NRP复合梁,其竖缝的峰值荷载为横缝的2.50倍, 最终破坏的竖向挠度为横缝的1.13倍,对于SBS复 合梁,其竖缝的峰值荷载为横缝的2.59倍,最终破坏 的竖向挠度为横缝的1.09倍,可以推得竖缝的产生 对复合梁承载能力影响较小。

(2) NRP改性沥青混合料较普通改性沥青具有 更好的抗反射裂缝性能:① 从荷载--挠度曲线中可以 看出破坏时的最大荷载和最终破坏时的竖向挠度均 大于SBS改性沥青;②从纵向应变-时间曲线中可以 看出应变片失效时记录到的NRP复合梁的应变值大 于SBS复合梁,且临近应变片失效时NRP复合梁的 应变增长速率略小于SBS复合梁,说明此时NRP改 性沥青混合料层裂缝张开速率略小于SBS改性沥青 混合料层,从而证明NRP改性剂对于沥青混合料进入 屈服阶段后的抗反射裂缝能力增强效果更佳,对于延 缓机场道面沥青加铺层反射裂缝产生的效果更好。

#### 参考文献:

- [1] 陈惊宇,武翔云,盛昀,等.机场混凝土道面常见裂缝生成原因及防治措施研究[J].建材与装饰,2018(24):
  252-253.
- [2] 朱朴,肖启扬,蔡芬芳.沥青加铺层使用指标检测与早期 病害防治:以泉州市政道路为例[J].吉林建筑大学学报, 2020,37(5):31-40.
- [3] 汤豆.基于典型病害的机场旧水泥混凝土道面沥青加铺 结构研究[D].西安:长安大学,2016.
- [4] 杨婉怡.旧水泥混凝土道面沥青罩面改造的病害及处置 技术研究[D].西安:长安大学,2015.
- [5] 朱林,方诗圣.基于半刚性基层的沥青路面裂缝分析及防 范策略[J].合肥工业大学学报(自然科学版),2010,33(12):
   1839-1842.
- [6] LI H Z. Cracks resisting mechanism analysis of large stone mixture base based on mechanics calculations[J]. Advanced Materials Research, 2013, 723:729-736.
- [7] ZHANG D, HOU S G, BIAN J, et al. Investigation of the micro-cracking behavior of asphalt mixtures in the indirect tensile test[J]. Engineering Fracture Mechanics, 2016, 163: 416-425.
- [8] LI C, XIAO Y, CHEN Z W, et al. Crack resistance of asphalt mixture with steel slag powder[J]. Emerging Materials Research, 2017, 6(1):214-218.
- [9] YANG C, XIE J, ZHOU X J, et al. Performance evaluation and improving mechanisms of diatomite-modified asphalt mixture[J]. Materials, 2018, 11(5):686.
- [10] CHENG Y C, YU D, TAN G J, et al. Low-temperature performance and damage constitutive model of eco-friendly basalt fiber-diatomite-modified asphalt mixture under freeze-thaw cycles[J]. Materials, 2018, 11(11): 2148.
- [11] 王雪莲,黄晓明,卞国剑.LSPM对防治半刚性基层沥青路 面反射裂缝机理分析[J].公路交通科技,2016,33(7):12-18.
- [12] 栾利强.半刚性基层沥青路面疲劳裂缝扩展与寿命预估 研究[J].土木工程学报,2017,50(9):118-128.