DOI:10.14048/j.issn.1671-2579.2022.02.010

机场刚性道面基层顶面模量转换关系研究

董倩¹,吕耀志^{2,3},程少锋¹,张献民¹

(1.中国民航大学 机场学院,天津市 300300; 2.天津市市政工程设计研究院,天津市 300051;3.天津市基础设施耐久性企业重点实验室,天津市 300051)

摘要:应用弯沉等效原则,基于有限元模拟计算,研究机场刚性道面基层顶面回弹模量与 反应模量间的转换关系,解决机场刚性道面设计中基层顶面反应模量需靠经验确定的弊端。 通过设计正交试验,计算 49 组典型道面结构下一一对应的基层顶面回弹模量与反应模量,由 极差分析确定各因素对转换关系的影响程度,并利用 Matlab 多元非线性回归方法建立了两 者间的转换公式,通过现场实测数据验证了转换公式的准确性。结果表明:回归公式计算出 的基层顶面反应模量误差在 8%以内,精度较高;面层厚度对基层顶面回弹模量转换关系的 影响比弹性模量更加显著,厚度由 0.31 m 增大至 0.43 m 时,与同一基层顶面回弹模量对应 的反应模量减幅均在 30%左右;面层弹性模量由 21 000 MPa 增大至 41 000 MPa 时,同一基 层顶面回弹模量对应的反应模量减幅均在 20%左右。

关键词:基层顶面回弹模量;基层顶面反应模量;正交试验;极差分析;回归公式

目前,中国刚性水泥混凝土道面设计中由基层顶 面反应模量计算道面的刚度半径,进而确定面板厚度。 而基层顶面反应模量由土基反应模量和基层当量厚度 查经验图确定,其中基层当量厚度值由基层各材料层 的厚度乘以其相应的当量系数相加而得^[1]。但当量系 数以区间形式列出,且未明确规定当量系数与材料强 度的一一对应关系,需根据经验选取,导致此方法确定 的基层顶面反应模量误差较大,从而影响了道面设计 的准确性。

在弹性层状体系理论下,基层顶面回弹模量与基 层顶面反应模量具有相似意义,它表征面层以下各结 构层对于面层的支承作用,通常由面层以下各结构层 弹性模量与厚度通过特定方法计算得出。关于基层顶 面回弹模量的确定方法已有深入研究,研究成果颇为 成熟。总体分为两类:基于弯沉等效^[2-5]或基于应力 等效^[6-8],如王振辉、蔡良才等^[2]基于位移等效原则, 研究了道面结构参数、飞机荷载作用半径及主起落架 构型对基层顶面当量回弹模量的影响,建立了机场道 面基层顶面当量回弹模量的回归公式;姜爱锋、姚祖 康^[5]指出现行水泥混凝土路面设计规范中在多层弹性 地基模量换算方面存在的问题,给出了目前常用路面 结构形式下切实可行的解决办法;蒋应军等^[7]应用弹 性层状理论,研究了不同等效方法对基层顶面当量回 弹模量换算结果的影响,确定了不同等效方法的适用 条件。

该文提出由机场水泥混凝土道面基层顶面回弹模 量确定反应模量的方法。基于弯沉等效原则,依托有 限元模拟计算,通过设计正交试验,研究基层顶面反应 模量与基层顶面回弹模量间的转换关系,建立回归公 式。当道面面层以下各结构层参数确定后,首先转换 成基顶回弹模量^[2],然后根据转换关系,精确确定反应 模量,为机场水泥混凝土道面结构层设计及 PCN 计算 提供方便。

1 模量换算原理与方法

关于反应模量与回弹模量的转换研究,国内外研究并不多见。张建霖等^[9]依据实测点挠度相等的方法 实现地基回弹模量和反应模量之间的转换;尚世英 等^[10]利用最小二乘准则,并利用特定点位置位移相 等,实现两种模量的转换。然而,两种地基理论下的位 移表达式复杂,上述专家提供的模量转换方法,需要借 助计算机迭代运算确定两个地基参数,实际应用过程 中难度较大。FAA 在提出刚性道面设计建议时,给出

收稿日期:2020-06-12

基金项目:中央高校基本科研业务费专项资金资助项目(编号:3122017039)

作者简介:董倩,女,博士研究生.E-mail:549841779@qq.com

了回弹模量与反应模量转换的经验公式^[11],但此类方 法并未考虑面层参数对转换关系的影响;唐亨山、张海 泉^[12]根据现场承载板试验实测数据,给出了软黏土路 基上土基回弹模量与地基反应模量间的回归关系,但 其通用性受到限制。该文建立的模量转换关系模型基 于位移等效原则,即荷载作用位置处位移相等,考虑了 典型的刚性道面结构,通用性强,具体原理如下:

Winkler 地基条件下,圆形均布荷载 p 作用时,水 泥混凝土道面板产生的挠度如式(1)所示:

$$w_{A}(r) = \frac{pR}{k_{j}l} \int_{0}^{\infty} \frac{J_{0}(r/l)J_{1}(R/l)}{1+t^{4}} dt$$
(1)

弹性半空间地基条件下,圆形均布荷载 p 作用时,道面板产生的挠度如式(2)所示:

$$w_{B}(r) = \frac{2(1-\mu_{0}^{2})Q}{\pi RE_{0}} \int_{0}^{\infty} \frac{J_{0}(art)J_{1}(aRt)}{t(1+t^{3})} dt \quad (2)$$

式中:k;、E₀、µ₀分别为基顶反应模量、回弹模量、泊松 比;R为荷载圆半径;Q为均布荷载合力;t为积分参数;l为道面板的相对刚度系数;a为道面板的弹性特 征系数。

l、a 分别如式(3)、(4)所示:

$$l = \sqrt[4]{\frac{D}{k_j}} = \sqrt[4]{\frac{Eh^3}{12(1-\mu^2)k_j}}$$
(3)

$$a = \frac{1}{h}^{3} \sqrt{\frac{6E_{0}(1-\mu^{2})}{e(1-\mu_{0}^{2})k_{j}}}$$
(4)

式中: $E_{\mu,h}$ 分别为道面板弹性模量、泊松比、厚度; J_0,J_1 分别为第一类零阶、一阶贝塞尔函数。

当地基反应模量与回弹模量给定时,便可以通过 式(1)~(4)计算出特定点的挠度值。根据位移等效原则,令荷载作用位置中心点的位移相等,即 $w_A(r) = w_B(r)$,且 $Q = q \cdot \pi R^2$,则有:

$$\frac{1}{k_{j}t} \int_{0}^{\infty} \frac{J_{0}(rt/l)J_{1}(Rt/l)}{1+t^{4}} dt = \frac{2(1-\mu_{0}^{2})}{E_{0}} \times \int_{0}^{\infty} \frac{J_{0}(art)J_{1}(aRt)}{t(1+t^{3})} dt$$
(5)

$$k_{j} = \frac{\int_{0}^{\infty} \frac{J_{0}(rt/l) J_{1}(Rt/l)}{1+t^{4}} dt}{2(1-\mu_{0}^{2}) \cdot l \cdot \int_{0}^{\infty} \frac{J_{0}(art) J_{1}(aRt)}{t(1+t^{3})} dt} \cdot E_{0}$$
(6)

如此便建立了基顶反应模量与回弹模量的转换。 但 *l* 中含有 *k_j*,*a* 中含有 *E*₀,转换过程中涉及迭代运 算,计算繁琐。因而通过有限元模拟不同道面结构,计 算一一对应的反应模量与回弹模量,通过多元非线性 拟合,确定二者的转换关系。

2 有限元模型的建立与精度验证

有限元模型计算精度的高低是基层顶面反应模量 与回弹模量能否精确转换的基础。首先对建立的有限 元模型进行精度验证^[13]。分别计算集中荷载与均布 荷载作用下,有限元解与理论数值解的误差,调整有限 元网格、边界条件等参数,直至有限元解与理论数值解 的误差在 10%以内。

2.1 弹性半空间地基

弹性半空间体地基模型中,场道面层尺寸为 45 m× 15 m×0.36 m(宽×长×厚),有限元单元体尺寸 0.3 m(宽)×0.15 m(长)×0.18 m(厚),由实体单元 Solid 45 模拟。弹性半空间体地基假设土基在厚度方 向无限延伸,考虑计算机的运算速度,且由土基附加应 力与自重应力的比值小于 5%[14] 确定有限元模型的土 基厚度为 12 m, 土基网格尺寸划分为 0.3 m(宽)× 0.15 m(长)×0.5 m(厚)。所建立的模型坐标系统 中,Z方向为飞机滑行方向,X方向为垂直于飞机滑 行方向,Y方向为道面结构的竖直方向。道面板四边 自由,不施加约束;基层部分垂直于飞机滑行边界 (XOZ 平面), 施加 X X Z 3 个方向约束, 平行于飞机滑行方向的边界(YOZ 平面), 施加 X 方向约束, 底面 施加全约束^[15]。半径为 0.15 m, 胎压为 1.15 MPa 均 布荷载作用下,理论数值解与有限元解的误差如表1 所示。由表1可以看出:大多误差控制在5%以内,因 此模型精度符合要求。

表1 弹性半空间地基位移误差

距离/m ·	均布荷载作用下道面竖向位移					
	有限元解/μm	理论数值解/μm	误差/%			
0.3	302.0	302. 2	0.07			
0.6	286.5	289.2	0.94			
0.9	271.0	272.2	0.45			
1.2	253.0	254.4	0.52			
3.0	153.4	153.9	0.33			

注:距离为距荷载作用中心位置处的距离。下同。

2.2 文克勒地基

Winkler 地基板系统的面板尺寸、网格划分、模拟 单元、强度参数均与弹性半空间地基相同。Winkler 地基由 Combine14 模拟,弹簧刚度由基顶反应模量与 网格尺寸依照贡献面积法^[17]获取。水泥混凝土道面 板四周自由,仅在板底面的四边施加全约束,弹簧底端 施加全约束。分别计算在集中力和圆形均布荷载作用 下,道面的竖向位移,结果如表2所示。由表2可见, 位移误差在7%以内。

距离/m	均布荷载作用下道面竖向位移					
	有限元解/μm	理论数值解/μm	误差/%			
0.2	123.81	118.32	4.65			
0.9	96.12	97.91	1.89			
1.6	67.32	65.81	-2.21			
2.9	32.93	31.21	-5.44			
4.0	8.10	7.92	-1.95			

表 2 Winkler 地基位移误差

3 反应模量与回弹模量转换

3.1 模量转换方法介绍

模量转换基于弯沉等效原则,具体实现过程如下: 首先,建立具有一定基顶回弹模量的弹性半空间地基 跑道有限元模型,计算其在集中与均布荷载作用下的 位移;然后建立具有同样面层结构的 Winkler 地基模 型,施加同样大小的荷载,通过调整反应模量,使荷载 作用位置处的竖向位移相等。如此,便确定了与回弹 模量对应的反应模量。计算可知,面层厚度为 0.36 m,弹 性模量为 36 000 MPa,基层顶面回弹模量为 270 MPa 时,对应的基层顶面反应模量为 80 MN/m³。距荷载 作用中心位置 1.2 m 及 6 m 内,道面的弯沉曲线如图 1 所示。由图 1 可以看出:两种有限元模型的位移曲 线只在荷载作用区或接近荷载作用区较好拟合,距离 荷载作用区较远处,位移相差较大,这恰是由于弹性半 空间地基模型考虑了土体传递剪力,而 Winkler 地基 模型假设地基不传递剪力所致。

3.2 面层厚度对转换关系的影响

保持水泥混凝土道面面层弹性模量 34 000 MPa 不变,使面板厚度 h 由 0.31 m 增加到 0.43 m。经有 限元计算可得与回弹模量对应的反应模量,如表 3 所 示。观察表 3 中数据可知:基层顶面回弹模量不变时, 随面层厚度增大,与之对应的基层顶面反应模量减小。 当面层厚度由 0.31 m 增大至 0.43 m,基层顶面反应 模量的减幅均在 30%左右。对表 3 中的数据进行回 归分析可知反应模量与回弹模量成幂函数关系:K= *aE*^b,且道面厚度增大时,*a* 减小,*a* 随面层厚度*h* 线性 变化,*a*=-0.121 8*h*+0.078 9;*b* 随面层厚度呈二次 多项式关系,*b*=1.711 3*h*²-1.125 9*h*+1.527 6,如 图 2 所示。

图 1 两种地基模型的位移曲线

表 3 不同面层厚度下反应模量与回弹模量

基层顶面	不同面层厚度 h(m)时基层						
回弹模量		顶面	面反应模	莫量/(M	N • m ⁻	3)	
E_{0}/MPa	0.31	0.33	0.35	0.37	0.39	0.41	0.43
80	15	14	13	13	12	11	11
120	26	24	23	22	21	19	18
160	38	36	34	32	30	29	27
200	52	48	46	43	41	39	37
240	66	62	58	55	52	50	47
280	81	76	72	68	64	61	58
320	97	91	86	81	77	73	70
360	114	107	100	95	90	86	82
420	140	131	124	117	111	105	101
480	168	157	148	140	133	126	121

3.3 面层弹性模量的变化对转换关系的影响

面层厚度为 0.36 m,面层弹性模量为 21 000、 26 000、29 000、31 000、34 000、37 000 与 41 000 MPa 时,经有限元计算可得,基层顶面回弹模量 E。与反应 模量 k;转换关系如表 4 示。由表 4 可知:基层顶面回 弹模量固定不变时,面层弹性模量增大,与之对应的基 层顶面反应模量减小。经计算可知:当面层弹性模量 由 21 000 MPa 增大至 41 000 MPa 时,基层顶面反应 模量减幅均为 20%左右,说明与面层厚度相比,其弹 性模量对转换关系的影响要弱。不同面层模量下,两 者呈幂函数关系。

图 2 参数 a 与 b 随面层厚度 h 的变化规律

表 4 不同面层弹性模量下反应模量与回弹模量

基层顶面		不同面	层弹性	模量 E(MPa)₿	才基层	
回弹模量		顶面	面反应模	袁量∕(M	N • m ⁻	3)	
E_0/MPa	21 000	26 000	29 000	31 000	34 000	37 000	41 000
80	15	14	14	13	13	13	12
120	26	24	24	23	22	22	21
160	39	36	35	34	33	32	31
200	52	49	47	46	44	43	41
240	66	62	60	59	57	55	53
280	82	76	74	72	70	68	65
320	98	91	88	86	83	81	78
360	115	107	103	101	98	95	91
420	141	132	127	124	120	116	112
480	169	158	152	148	144	139	134

3.4 正交试验法确定模量转换关系

参照上述转换关系确定方法,计算不同刚性面层 加铺于各强度的基层结构时,基层顶面回弹模量与反 应模量的一一对应值。进行正交试验设计^[18],并开展 极差分析,确定显著影响因素。与此同时利用 Matlab 编程,对大量数据进行多元非线性拟合,即可获得基顶 回弹模量与基顶反应模量的转换关系模型。

在进行正交试验设计时,以基层顶面反应模量为 试验指标,按照面层弹性模量、厚度、基层顶面当量回 弹模量这3个因素的取值范围,设计了L49(7⁵)正交 表。因素水平见表5,正交试验方案及结果见表6。

表 5 因素水平

水平	面层模量 E/MPa	面层厚度 h/m	基层顶面回弹 模量 E ₀ /MPa
1	20 000	0.30	100
2	25 000	0.32	180
3	28 000	0.34	220
4	30 000	0.36	280
5	33 000	0.38	340
6	36 000	0.40	400
7	40 000	0.42	450

表 6 正交试验方案及结果

序号	面层模 量 E/ MPa	面层厚 度 <i>h</i> / m	基层顶 面回弹 模量/MPa	基层顶面 反应模量/ (MN・m ⁻³)	回归公式 计算解/ (MN・m ⁻³)
1	20 000	0.30	100	23	24
2	20 000	0.32	180	50	51
3	20 000	0.34	220	64	63
4	20 000	0.36	280	84	83
5	20 000	0.38	340	103	103
6	20 000	0.40	400	124	123
7	20 000	0.42	450	141	140
8	25 000	0.30	450	174	174
9	25 000	0.32	100	22	22
10	25 000	0.34	180	46	45
11	25 000	0.36	220	56	56
12	25 000	0.38	280	74	74
13	25 000	0.40	340	92	92
14	25 000	0.42	400	111	110
15	28 000	0.30	400	143	144
16	28 000	0.32	450	158	158
17	28 000	0.34	100	20	20
18	28 000	0.36	180	41	41
19	28 000	0.38	220	51	51
20	28 000	0.40	280	67	68

续表6

序号	面层模 量 E/	面层厚 度 h/	基层顶 面回弹	基层顶面 反应模量/	回归公式 计算解/
	MPa	m	模量/MPa	$(MN \cdot m^{-3})$	$(MN \cdot m^{-3})$
21	28 000	0.42	340	84	84
22	30 000	0.30	340	112	113
23	30 000	0.32	400	133	132
24	30 000	0.34	450	145	145
25	30 000	0.36	100	18	18
26	30 000	0.38	180	38	38
27	30 000	0.40	220	48	47
28	30 000	0.42	280	63	63
29	33 000	0.30	280	85	85
30	33 000	0.32	340	103	103
31	33 000	0.34	400	121	120
32	33 000	0.36	450	132	133
33	33 000	0.38	100	17	17
34	33 000	0.40	180	34	35
35	33 000	0.42	220	44	43
36	36 000	0.30	220	60	60
37	36 000	0.32	280	77	77
38	36 000	0.34	340	94	94
39	36 000	0.36	400	110	110
40	36 000	0.38	450	122	122
41	36 000	0.40	100	15	15
42	36 000	0.42	180	32	32
43	40 000	0.30	180	43	44
44	40 000	0.32	220	54	54
45	40 000	0.34	280	71	70
46	40 000	0.36	340	86	85
47	40 000	0.38	400	100	100
48	40 000	0.40	450	110	111
49	40 000	0.42	100	14	14

极差分析可以确定各因素对试验指标的影响及最 佳方案,该文极差计算结果见表 7。由表 7 可知:基层 顶面回弹模量对反应模量的影响最显著,而其他各因 素均有不同程度的影响。按极差值大小排序依次是: 基层顶面回弹模量>面层厚度>面层模量。

综合上述关系,建立地基模量转换关系模型如式(7):

$$K = [ah + b \ln E + c] E_0^{dh^2 + eh + f}$$

$$\tag{7}$$

	衣/					
因素	面层模量 E/MPa	面层厚度 h/m	基层顶面回弹 模量 E ₀ /MPa			
均值1	84.1	91.4	18.4			
均值 2	82.1	85.3	40.6			
均值3	80.6	80.1	53.9			
均值4	79.6	75.3	74.4			
均值5	76.6	72.1	96.3			
均值6	72.9	70.0	120.3			
均值 7	68.3	69.9	140.3			
极差R	15.9	21.6	121.9			

借助 Matlab 软件编写程序,展开多元非线性拟合,即可确定 a、b、c 等参数,见表 8。

表 8 拟合参数

参数	取值	参数	取值
а	-0.112	d	1.619
b	-0.013	e	-1.123
С	0.212	f	1.536

则基顶反应模量与基顶回弹模量的转换关系模型 如式(8)所示:

 $K = [-0.112h - 0.013\ln E + 0.212] \cdot E_0^{1.629h^2 - 1.123h + 1.536}$ (8)

4 实例验证

以北京沙河机场为例,水泥混凝土道面,混凝土弹 性模量为 35 000 MPa, 泊松比为 0.15,厚度为 0.18 m,地基泊松比为 0.35。在刚硬圆盘上加载,圆 盘半径为 20 cm,识别出的地基参数见表 9^[9],由转换 关系模型式(8)计算出的地基反应模量 K'及误差如 表 9 所示,可以看出误差均在 8%以内,说明转换模型 具有较高的精度。

表 9 模型精度验证误差

q /	E_{0} /	K/	K'/	误差/
MPa	MPa	$(MN \cdot m^{-3})$	$(MN \cdot m^{-3})$	%
0.3	21.9	87.6	94.5	7.3
0.5	21.6	86.1	93.0	7.4
0.7	20.3	79.6	85.4	6.8
0.9	18.4	70.8	74.5	5.0
1.1	18.6	71.3	75.5	5.6

5 结论

通过有限元模拟及 49 组数据正交计算,对基顶回 弹模量与反应模量的转换关系进行研究,解决了目前 机场刚性道面设计中,基顶反应模量需由经验获得的 弊端,得出以下结论:

(1)基层顶面反应模量与回弹模量呈幂指数函数 的变化规律。

(2)回弹模量固定不变时,面层厚度增大,面层厚 度固定不变时,弹性模量增大,转换求得的地基反应模 量均减小。当面层厚度由 0.31 m 增大至 0.43 m,转换 所得的地基反应模量减幅均在 30%左右;机场刚性道面 的道面层弹性模量对转换关系的影响与厚度相比较小, 当面层弹性模量由 21 000 MPa 增大至 41 000 MPa 时, 转换所得的地基反应模量减幅均在 20%左右。

(3) 开展极差分析,确定了单因素影响规律,建立 了基顶回弹模量与反应模量的转换公式。以北京沙河 机场数据为例,对模型的精度进行验证,结果显示,转 换误差均控制在8%以内,说明模型具有较高精度。

参考文献:

- [1] MHJ 5004—2010 民用机场水泥混凝土道面设计规范 [S].
- [2] 王振辉,蔡良才,黄命辉,等.机场道面基层顶面当量回弹 模量的计算方法[J].交通运输工程学报,2011,11(1): 7-12.
- [3] 王振辉,蔡良才,顾强康,等.基层顶面当量回弹模量确定 方法的修正[J].空军工程大学学报(自然科学版),2009, 10(6):23-27.
- [4] 马士宾,孙敬福,袁文瑞,等.石灰处理软土路基深度与土

基当量回弹模量关系研究[J].河北工业大学学报,2015,44(5):97-101.

- [5] 姜爱锋,姚祖康.路面结构中地基顶面当量回弹模量的换 算[J].同济大学学报,2001,29(5):536-540.
- [6] 谈至明,王力.基于弯拉应力等效的地基当量回弹模量 [J].公路交通科技,2015,32(3):46-50.
- [7] 蒋应军,戴经梁,陈忠达.不同等效原则的基层顶面当量
 回弹模量算法[J].长安大学学报(自然科学版),2005,25
 (3):1-6.
- [8] 蒋应军,戴经梁.基于温度应力等效的基顶当量回弹模量 换算方法[J].公路交通科技,2006,23(7):10-13.
- [9] 张建霖,张洵安.机场道面的地基参数识别及承载力分析 [J].西北工业大学学报,2004,22(1):64-67.
- [10] 尚世英,王尚文.机场道面地基参数的识别与转换[J]. 西北工业大学学报,1993,11(1):91-95.
- [11] Advisory Circular 150/ 5320 6F Airport Pavement Design and Evaluation[S].
- [12] 唐亨山,张海泉.软粘土路基上土基回弹模量与地基反 应模量关系研究[J].道路工程,2016(8):88-90.
- [13] 冷培义. 机场道面设计[M]. 北京:人民交通出版社, 1995.
- [14] 张献民,董倩,吕耀志.飞机主起落架构型对道面力学响 应的影响[J].西南交通大学学报,2014,49(4):675-681.
- [15] 张献民,薛华鑫,董倩,等.飞机跑道荷载响应深度变化规律[J].北京航空航天大学学报,2014,40(4):427-432.
- [16] 周正峰,凌建明,袁捷.机场水泥混凝土道面接缝传荷能 力分析[J].土木工程学报,2009,42(2):112-118.
- [17] 任露泉.试验优化设计与分析[M].北京:高等教育出版 社,2003.
- [18] 李九苏,王平,王争愿,等.十溴二苯乙烷阻燃反应型常 温沥青的研究[J].长沙理工大学学报(自然科学版), 2020,17(2):26-32.