DOI:10.14048/j.issn.1671-2579.2021.06.031

大跨径斜拉桥索梁锚固区力学特征分析及优化

熊华涛

(中铁十六局集团铁运工程有限公司,河北 高碑店 074000)

摘要:为探究斜拉桥索梁锚固区受力机理,建立了某斜拉桥索梁锚固区钢锚箱局部三维 有限元模型,对钢锚箱整体及各板件进行了详细受力分析,并基于自适应遗传算法,对钢锚箱 板件厚度进行了优化。结果表明:钢锚箱 M1 板件与其他板件相交位置应力集中效应较为明 显,呈现出较为典型的面外受弯状态,建立以钢锚箱应力为约束条件的目标函数,板件 M1、 M2、M5、M6 厚度均有不同程度增大,M3、M4 板件厚度有小幅降低。优化后各板板件沿斜拉 索索力方向应力和等效峰值应力降幅较为明显,分别达 11%、10% 左右;板件 M1 两项应力 指标有小幅增长,增幅均在 5%以内,同时钢锚箱板件应力集中现象得到缓解,基于自适应变 量的遗传算法在钢锚箱优化中取得了较好的效果,具有较高的精度和较强的鲁棒性。

关键词:钢锚箱;自适应遗传算法;斜拉索方向应力;等效峰值应力

大跨径斜拉桥索梁、索塔锚固区一般采用钢锚箱 式锚固结构。钢锚箱锚固结构板件众多,受力呈现典 型的空间效应,局部板件在高应力作用下,容易出现强 度下降或疲劳破坏。同时,由于锚固结构构造本身的 复杂性,且承受强大的集中力作用,且对部分连接板件 产生偏心效应,简单的力学模型很难描述其力学行为, 须建立精细化的局部有限元模型分析钢锚箱的力学特 征。国内外学者为此做了大量的研究工作。李燕通过 采用"子模型技术",对某斜拉桥钢锚箱开展了有限元 数值分析工作,明确了钢锚箱部分板件应力集中区域, 探究了应力分布在板件上不连续性的原因,为现场施 工监控提供了指导:周绪红对某斜拉桥索梁锚固区开 展了三维非线性有限元模拟研究,同时考虑了锚箱承 压板与锚垫板之间的接触问题;张清华等以苏通长江 大桥为研究对象,采用试验与有限元相结合的手段,研 究了边界处理对有限元分析精度的影响,获取了各板 件的受力特性;欧键灵对某宽幅单索面斜拉桥钢锚箱 进行数值分析,并对板件构造提出了改进建议。同时, 相关学者也开展了多项锚固结构的模型试验及数值模 拟研究,明确了钢锚箱的传力机理和应力分布,研究了 各类板件参数及设置对力学性能的影响。该文在现有 研究成果的基础上,以某大跨径斜拉桥为工程背景,建 立索梁锚固区局部有限元模型,分析其受力特征,并基 于自适应遗传算法开展钢锚箱板件厚度优化研究。

1 索梁锚固区有限元数值分析

以某大跨径斜拉桥索梁锚固区为研究对象,该钢 锚箱焊接于钢箱梁主梁外侧,斜拉索锚头与钢箱梁承 压板紧顶接触,从而将索力通过钢锚箱传递至钢箱梁 上,所有板件均为Q345钢材,整个钢锚箱分为6组板 件,编号为M1~M6,各板件厚度分别为48、60、60、 60、48、48 mm,由于钢锚箱附近板件众多,应力分布较 为复杂,需对该部位进行详细的受力分析。钢锚箱构 造图及侧面图见图1、2,板件编号见图3。

图1 钢锚箱构造图(单位:mm)

使用 Ansys 建立该部位局部精细化有限元模型, 选取承受索力最大的钢锚箱作为分析对象,根据圣维 南原理,取 3 倍钢锚箱体积区域的主梁及锚固区建模, 由于承压板 M2 板件较厚,该部分使用 Solid45 建模, 钢锚箱其余部分以及钢箱梁均采用 Shell63 板单元模 拟,由于模型尺寸大于 3 倍钢锚箱尺寸,边界对锚箱受 力影响较小,因此在远离锚箱的主梁三边板件设置为 面固结约束,由于 M1 板件与 M2 板件是紧顶接触,在 Ansys 中设置接触单元,通过两组板件的变形确定其 接触面积,在荷载输入时仅考虑斜拉索索力作用,忽略 钢箱梁内力对钢锚箱的影响,将斜拉索索力以面荷载 的形式施加于垫板 M2 上。

图 2 钢锚箱侧面布置图(单位:mm)

图 3 钢锚箱板件编号图

(c) M4 板件

图 4 为钢锚箱整体 Von Mises 应力分布结果。

图 4 钢锚箱整体 Von Mises 应力云图(单位:kPa)

由图 4 可知:锚固区位置传力途径较为明确,钢锚 箱前侧钢箱梁主要受压,后侧受拉,板件 M5 在靠近板 件 M1 附近、以及板件 M1 在与支承板件交界处的应力 较大,最大超过了 200 MPa,其他部位板件的应力较小, 锚固区附近钢箱梁腹板 Von Mises 应力均为 70 MPa。 图 5 及表 1 为板件 M1、M3、M4、M5~M6 的应力

0 53 333 106 667 160 000 213 333 26 667 80 000 133 333 186 667 240 000 (b) M3 板件

(d) M5、M6 板件

图 5 钢锚箱主要板件 Von Mises 应力云图(单位:kPa)

MPa

板件编号	沿索力方向	垂直索力方	等效峰值
	最大应力	向最大应力	应力
M1	223.11	187.53	236.78
M2	294.78	277.54	300.74
M3	234.27	211.78	243.11
M4	264.85	224.52	273.47
M5	227.42	216.38	247.79
M6	248.88	236.30	254.83

计算结果。

由图 5 可知:板件 M1 在板件 M3~M6 及钢箱梁 腹板约束下,受力呈现典型的面外弯曲,在与其他板件 及钢箱梁腹板相交位置,应力值普遍较大,Von Mises 应力范围为 200~240 MPa,其中板件边缘灰色区域部 分应力超过 240 MPa;板件 M3、M4 大部分区域处于 低应力状态,与板件 M1 相交位置出现局部弯曲,且拉 压应力在小范围内急剧变化;M5、M6 板件在靠近板 件 M1 的位置应力较大,下部区域出现较为明显的应 力集中现象,小部分灰色区域应力超过 240 MPa。各 板件连接部分以及与钢箱梁腹板相结合区域应力集中 现象较为明显,峰值应力较大。

3 钢锚箱板件厚度优化

通过对钢锚箱开展有限元数值模拟分析可知,索 梁锚固区钢锚箱结构较为复杂、几何形状突变,在斜拉 索索力直接作用下,锚固区应力分布不均,存在较为明 显的应力集中现象,在运营期活载长期作用下,容易产 生疲劳损伤裂纹,从而影响结构的可靠性和耐久性。 因此需对板件构造参数进行调整,以优化其局部受力。 该文选取 M1~M6 各板板厚作为待修正参数。由于 钢锚箱板件众多,各板板厚变化将引起锚箱整体或局 部刚度变化,改变其应力分布状态,其优化过程是一个 多参数互相影响、迭代调整的过程,该文基于最优化理 论,构建目标函数和约束条件,使用遗传算法对板厚进 行最优化求解。

钢锚箱各板板厚在变化过程中,应保证钢锚箱整体及各板件的应力最小,同时对板厚变化应作出一定限制,以避免所有板件同时无限增厚造成无法收敛的问题,该文中以所有板件总质量最小为另一目标函数。故目标函数可取为:

$$f_1(x) = f(\sigma) = \min(\sigma_1, \sigma_2, \sigma_3, \cdots, \sigma_n)$$
(1)

$$f_2(x) = \min \sum_{i=1}^n (m_1, m_2, \cdots, m_n)$$
 (2)

式中:*f*(*x*)为目标函数;σ_n为*n*号板件最大应力;*m*_n 为第*n*号板件的质量。

对于实际工程结构,在各荷载作用下,应保证结构 始终处于线弹性工作状态,因此构件最大应力不允许 超过其屈服应力,该文约束条件可取为:

$$\max(\sigma_1, \sigma_2, \sigma_3, \cdots, \sigma_n) \leqslant \sigma_{con}$$
(3)

式中:σ_{con} 为应力控制指标,此处取 Q345 钢材屈服 应力。

遗传算法在土木工程领域已有广泛应用,是一种 较为高效的全局最优搜索算法,其不依赖于具体的研 究领域,能有效解决目标函数或约束条件多峰性、非线 性等问题,具有较好的鲁棒性。该文联合 RBF 神经网 络与遗传算法开展钢锚箱结构厚度参数的优化分析, 该法可提升种群中的精英个数和比例,其原理为将自 适应参数也作为设计变量,自适应调整初始随机变量 的产生,大幅提高初始种群中的"精英率"。对于服从 正态分布的变量 x,其自适应随机变量按式(4)得到:

 $x_{i} = u_{i} + a\gamma_{1}\sigma_{i}\sqrt{-2\ln\gamma_{2}}\sin(2\pi\gamma_{3})$ (4) 式中:*a* 为变量,取值一般为[-10 10],可根据失效 概率调整。

在钢锚箱优化计算中,以 M1~M6 板件厚度为变 量,其初始值分别为 48、60、60、60、48、48 mm,变量范 围取 6σ(此处 σ 表示服从正态分布随机变量的标准 差),RBF 神经网络的输入为由 DPS 生成 U200(200⁶) 的均匀设计样本,采用 Matlab 批量处理目标函数结 果,设计变量训练参数见表 2。

表 2 设计变量参数信息

项目	初始 值/mm	变量范 围/mm	变异系数	分布类型
板件 M1 厚度	48	33.6~62.4	0.05	正态分布
板件 M2 厚度	60	42.0~78.0	0.05	正态分布
板件 M3 厚度	60	42.0~78.0	0.05	正态分布
板件 M4 厚度	60	42.0~78.0	0.05	正态分布
板件 M5 厚度	48	33.6~62.4	0.05	正态分布
板件 M6 厚度	48	33.6~62.4	0.05	正态分布

在 Matlab 中调用遗传算法模块,输入数学优化模型和相关参数后对设计变量进行全局最优搜索,使用 Python 脚本语言建立 Ansys 与 Matlab 的数据交互接口,调用 Ansys 有限元计算作为 RBF 神经网络训练样本数据,再使用 RBF 神经网络与遗传算法联合进行优 化分析。RBF 神经网络基本参数信息见表 3。

表 3 RBF 神经网络参数信息

项目	参数数值	说明
输入层	6	设计变量
输出层	1	钢锚箱各板件最大应力
训练组数	200	$U200(200^{6})$
网络控制精度	0	网络训练精度
测试要求精度	0.001	应力误差

4 优化结果

待程序收敛于最优解后,将设计变量输入至 Ansys 中,获取在最优设计变量结果下钢锚箱力学响应 特征,优化后设计变量见表 4。由表 4 可知:设计变量 优化前后板厚均有一定变化。

项目	初始值/ mm	优化值/ mm	变化幅度/ %
板件 M1 厚度	48	55.89	16.44
板件 M2 厚度	60	63.97	6.61
板件 M3 厚度	60	51.47	-14.22
板件 M4 厚度	60	49.33	-17.78
板件 M5 厚度	48	55.17	14.94
板件 M6 厚度	48	53.84	12.17

表 4 设计变量参数优化结果

为验证算法的有效性,提取板件 M1~M6 在最大 索力工况下的沿索力方向的应力及等效峰值应力结果 进行对比,具体见表 5。表 5表明:板件厚度变化对钢 锚箱应力值有一定影响,以沿索力施加方向应力值为 例,M2 作为直接承受斜拉索索力作用的板件,沿索力 方向上最大应力及等效峰值应力均有小幅降低,两者 降幅分别为4.55%、4.84%;板件 M3、M4 沿索力方向 最大应力降幅较为明显,均达到了 11%左右,等效峰 值应力降幅也达到了 10%左右,板件 M6 应力变化不 明显,两种应力指标降幅均在4%以内;板件 M1 应力 呈增大趋势,沿索力方向最大应力及等效峰值应力增 幅分别为4.67%和4.21%。

从优化后钢锚箱应力分布云图可知:对板厚进行 调整改变了钢锚箱局部刚度及应力传导路径,各板件 应力集中现象得到缓解,可认为通过自适应遗传算法 对钢锚箱板厚进行优化取得了良好效果。 表 5 优化前后钢箱梁主要板件应力对比结果

板件 - 编号	优化前	优化前/MPa		优化后/MPa	
	沿索力方向 最大应力	等效峰值 应力	沿索力方向 最大应力	等效峰值 应力	
M1	223.11	236.78	233.54	246.74	
M2	294.78	300.74	281.36	286.19	
M3	234.27	243.11	206.52	217.64	
M4	264.85	273.47	233.76	247.17	
M5	227.42	247.79	210.37	226.66	
M6	248.88	254.83	239.14	244.83	

5 结论

(1)钢锚箱在索力直接作用下,板件 M1 与板件 M3、M4、M5、M6 相交位置应力水平较高,最高达 300.74 MPa,应力集中较为明显,呈现出典型面外弯曲的受力特征。

(2)基于自适应遗传算法,以板厚为设计变量,建 立合理的目标函数和约束条件,能较为精确地获取板件厚度最优解,算法具有较高的精度和较强的鲁棒性,可为钢锚箱构造参数优化提供一种思路。

(3)优化后板件沿斜拉索索力方向最大应力降幅为11%左右,等效峰值应力降幅最大为10%左右,应力集中现象有一定程度缓解。

参考文献:

- [1] 吕文舒,陈星烨,张祖军.钢箱梁斜拉索索梁锚固区钢锚 箱受力性能及结构局部优化研究[J].中外公路,2020 (3).
- [2] 李燕.基于子模型技术法的钢锚箱结构强度研究[D].长 安大学硕士学位论文,2013.
- [3] 周绪红,吕忠达,狄谨,等.钢箱梁斜拉桥索梁锚固区极限 承载力分析[J]长安大学学报(自然科学版),2007(3).
- [4] 张清华,李乔.超大跨度钢箱梁斜拉桥索梁锚固结构试验 研究[J].土木工程学报,2011(9).
- [5] 欧键灵, 彭聪, 宁平华. 超宽幅单索面斜拉桥钢锚箱仿真 分析和设计优化[J]. 特种结构, 2016(4).
- [6] 金波,周旺,唐丽莹.正常使用极限状态下隐式功能函数结构可靠度计算[J].湖南大学学报(自然科学版),2020(1).
- [7] Tang Q Y, Zhang C X. Data Processing System (DPS) Software with Experimental Design, Statistical Analysis and Data Mining Developed for Use in Entomological Research[J]. Insect Science, 2013, 20(2):254-260.