DOI:10.14048/j.issn.1671-2579.2021.04.048

公路隧道洞口浅埋段初支位移控制基准研究

袁岽洋, 彭飞, 詹伟, 祝诗逸

(浙江省交通运输科学研究院,浙江杭州 311305)

摘要:山区公路隧道洞口浅埋段存在施工难度大、风险等级高等问题,目前多采用对初期 支护结构进行动态监测的方法,以达到对隧道施工进行安全评价和动态控制的目的。但现行 公路隧道规范在位移控制基准值的选取上存在一定的模糊性,未能充分考虑施工时围岩的释 放荷载所产生的开挖效应,需要对控制基准值进一步的细化研究。该文依托杭绍台高速公路 尖山1号隧道洞口浅埋段,模拟计算出各施工阶段初支结构的位移值,并且监测初支结构实 际位移。结合围岩荷载释放的空间效应,将与掌子面距离划分为0~1D、(1~2)D、>2D 共 3个区段,将隧道埋深分为(0~1)D、(1~2)D 两个区段(D 为隧道开挖跨径)。对初支位移 的模拟值与实测值进行综合对比分析,得出不同埋深情况下各区段内支护结构位移占极限位 移的比值,给出山区公路隧道洞口浅埋段初支结构位移控制基准建议值。

关键词:山岭隧道;初期支护;数值模拟;监控量测;位移控制基准

目前 95%的山岭隧道采用新奥法施工,监控量测 作为新奥法的三大支柱之一,通过监测信息的反馈既 可以及时地掌握隧道稳定性状态,验证支护参数设计 的合理性,确保施工安全,又是指导隧道动态施工的重 要手段。隧道洞内位移是监控量测中最重要、最具代 表性的参数之一。武科通过监控隧道的收敛位移和拱 顶下沉量回归分析,反映隧道的稳定状态;汪学清利用 最小二乘法和 nlinfit 函数法对位移量测数据进行处 理,预测了收敛趋于稳定的时间和总变形量。由此可 见,通过隧道洞内位移值来评判隧道稳定性是切实可 行的。位移控制基准值的确定,是定量评价隧道稳定 性以及确定施工管理等级的重要参数,由初期支护极 限位移值来确定。目前关于位移控制基准值的选定, 规范给出了相应的建议值,专家学者们也进行了相关 研究,马士伟针对软弱围岩隧道塌方问题,在综合分析 了规范允许值、类似工程实测值以及所在隧道工程实 测值的基础之上,确定了软弱围岩隧道塌方预警基准 值:汪波采用室内模型试验与现场试验相结合的研究 手段,研究了V级围岩隧道洞内位移与埋深、工法、支 护之间的关系,给出了施工期位移安全控制基准:陈伟 基于现场监测数据,采用 3σ 统计法得到了典型公路炭 质页岩隧道变形安全基准值,确定了不同埋深下的围 岩变形分级以及管理基准;王明年依托郑万高铁湖北 段大断面隧道群,开展初期支护位移现场监控量测,通 过对监测数据的分类统计、包络分析,得到了 IV、V级 围岩初期支护位移控制基准建议值;周艺对 197 个位 移监测断面变形正常段、发生异常及险情段位移的统 计分析,建立了破碎区软岩隧道采用三台阶+预留核 心土法时的位移控制基准。现有研究以隧道极限位移 控制基准值研究为主,对隧道变形的空间效应欠缺考 虑,其中对于浅埋公路隧道(埋深小于 2 倍跨径)洞口 研究相对较少。

该文依托杭绍台高速公路尖山1号隧道,采用理 论分析、数值模拟分析、现场监测相结合的方法对隧道 洞口浅埋段初期支护位移进行分析,综合考虑隧道变 形的空间效应、埋深因素并结合规范,给出山岭隧道洞 口浅埋段初期支护位移控制基准建议值。

1 浅埋隧道施工力学特性分析

浅埋隧道由于埋深较浅,受到的开挖扰动较大,相 对于深埋隧道围岩自稳较为困难,无法形成平衡拱,开 挖时容易发生贯通至地面的破坏。同时隧道浅埋段常 存在软弱围岩,岩石强度较低、岩体完整性较差、结构 相对松散等现象,由此导致施工难度大、风险高。JTG 3370.1—2018《公路隧道设计规范》要求对于浅埋段隧

收稿日期:2020-09-11(修改稿)

作者简介:袁岽洋,男,硕士,助理工程师. E-mail:yuan_dongyang@163.com

基金项目:浙江省交通建设工程监督管理局科技计划项目(编号:ZJ201806);浙江省交通厅科技计划项目(编号:2019053)

道应采用复合式衬砌,初期支护应选用锚喷支护,并进 行适当的超前支护。对于浅埋隧道考虑到围岩条件, 为了确保施工安全,初支与围岩的释放荷载分担比宜 达到 60%~80%,施工过程中要对初支结构进行及时 的监测,通过监测数据对支护结构的安全性以及隧道 的稳定性进行定量评价,以指导隧道的动态施工。因 此,需要设置安全合理的位移控制基准值。

施工期隧道变形具有一定的空间效应,释放荷载 的作用效应与断面位置、支护施做时机及完工时间有 关。一般通过反分析法确定空间效应释放系数,可参 照 JTG 3370.1—2018《公路隧道设计规范》按图 1 近 似选取。

图1 围岩荷载空间释放示意图

由图 1 可知:荷载随着掌子面向前推进逐步释放; 在掌子面处未进行开挖之前已有一部分荷载释放出, 这将导致现场位移监测值并非实际位移值,两者之间 存在一定的差值。

隧道开挖前围岩原始应力由自重应力及水平应力 组成:

 $\sigma = \sigma_g + \sigma_t$

式中: σ为围岩原始应力; σ_s为自重应力分量; σ_t为水 平应力分量。

根据 JTG 3370.1—2018《公路隧道设计规范》,对 于浅埋隧道自重应力的计算见式(2):

$$\sigma_g = \gamma H$$
 (2)
式中: γ 为隧道上覆围岩重度;H 为隧道埋深。

水平应力的计算见式(3):

 $\sigma_t = \gamma (H + H_t/2) \tan^2 (45^\circ - \varphi_c/2)$

式中: H_t 为隧道开挖高度; φ_c 为围岩计算摩擦角。

隧道开挖时导致原有的应力平衡破坏,应力得到 释放形成释放荷载并作用于支护结构上引起相应的位 移。释放荷载大小取决于两个因素:释放系数、原始应 力,释放系数与原始应力越大,相应释放荷载也越大。

2 数值模拟分析

2.1 依托工程概况

在建杭绍台高速公路尖山1号隧道为双向两车

道,属浅埋单洞隧道,地下水主要为基岩裂隙水,水量 贫乏,节理裂隙发育。围岩等级为V级,进口段表部为 残坡积含碎石粉质黏土,可塑状,厚度为0.1~3.1 m, 其下为全一强风化凝灰岩,岩体破碎强度低,隧道采用 复合式衬砌,初期支护参数见表1。

表 1 隧道初期支护参数

名称	规格
<i>k</i> 世 北 工	直径 \$25 mm,纵向间距 0.5 m,
1田 1十	环向间距 1.0 m,长 3.5 m
钢拱架	18 号工字钢,纵向间距 0.5 m
钢筋网	A6@20 cm \times 20 cm
喷射混凝土	C20,厚度 0.25 m

2.2 模拟计算

(1)

(3)

(1) 计算参数

隧道围岩力学参数见表 2。

表 2 围岩力学参数

围岩	E/ GPa	μ	φ/ (°)	c/ MPa	$\gamma/$ (kN • m ⁻³)
粉质黏土	0.020	0.35	25	0.028	19.5
全一强风 化凝灰岩	0.055	0.30	33	0.035	21.4

对于初期支护,在数值模拟计算时采用刚度等效 原则,将钢架和钢筋网折算到混凝土中,计算得到支护 结构的各项力学性质见表 3。

表 3 支护结构力学参数

项目	<i>E</i> /GPa	μ	$\gamma/(kN \cdot m^{-3})$
初支	23	0.20	22.0
锚杆	200	0.19	78.5

(2) 计算模型

采用 Midas/GTS NX 有限元分析软件进行模拟 分析,计算模型见图 2。

图 2 计算模型

此次实际施工采用二台阶法开挖,上下台阶的安 全步距为1倍的开挖跨径,每次开挖进尺为1m。实 际计算机模拟开挖施工步骤为:①上台阶开挖;②上 台阶锚杆支护;③上台阶喷混支护;④下台阶开挖; ⑤下台阶锚杆支护;⑥下台阶喷混支护。模型共计 12 257个节点,23 939个单元。

为分析不同埋深处隧道初期支护结构的位移变化 情况,选取4个计算断面:断面1位于隧道入口处,埋 深0.5D,断面2埋深1D,断面3埋深1.5D,断面4埋 深2D,D为隧道开挖宽度,模拟分析断面见图3。

图 3 模拟分析断面示意图

2.3 模拟计算结果分析

模拟得到开挖过程中初支位移变化情况,统计分 析得到各监测断面初期支护结构竖向位移值、周边收 敛值,绘制位移一步距曲线见图4、5。

图 5 模拟初支周边位移曲线

由图 4、5 可知:随着监测断面与开挖面之间距离 的增加,初支结构拱顶下沉值、周边收敛值逐渐变大; 在 0~1D 范围内位移变化较快,在 1D~2D 范围内变 化速率开始减缓,2D~3D 范围内变化趋于平稳,当开 挖距离超过 3D 以后变形基本稳定不变,可将开挖距 离为 4D 时的位移值,作为初期支护结构的最终位 移值。

3 现场监控量测

由于数值模拟计算是在一定的理想化假设基础之上,为真实反映支护结构位移变化情况,在模拟断面处进行实际的监控量测工作。拱顶位移采用反光片进行非接触式现场观测,监测仪器选用莱卡 TM-50 全站仪,测试精度为0.01 mm;周边收敛选用 JSS-30A-30 型收敛计,测试精度为0.01 mm;周边收敛选用 JSS-30A-30 型收敛计,测试精度为0.01 mm。初期支护完成后 立即进行测点的布设,及时完成初始数值的采集工作, 以后在每次爆破开挖完成后进行相应的监测。断面 1 ~4 监测结果见图 6、7。

图 7 实测初支周边位移曲线

对比实测值与模拟计算值可知:实测累计位移值 与理论计算值之间存在一定的偏差,主要是因为软件 在进行模拟计算时,荷载以围岩自重为主未能充分考 虑构造应力,同时实际位移影响因素较多,模拟计算时 无法全部考虑;实测值小于模拟计算值,这是由于现场 监测存在一定的滞后性以及与围岩的荷载释放效应有 关。虽然实测值与理论计算值两者之间存在一定的偏 差,但两者的变化趋势规律相似,均反映出支护结构位 移变化的空间效应。

4 位移控制基准建议值研究

对支护结构模拟计算位移、实测位移进行综合对 比分析,计算出不同埋深的监测断面在距掌子面不同 距离时的位移值占最终稳定位移值的比值,见表 4。

而日	公析	रेन पह	不同监测断面埋深初支位移占比/%			
坝日	75 101	미맫	0.5D	1.0D	1.5D	2.0D
		1D	43.9	50.5	67.8	70.6
	数值	2D	75.4	81.6	88.3	89.1
	模拟	3D	92.4	96.6	97.2	97.1
拱顶		4D	100	100	100	100
沉降		1D	51.7	58.4	59.4	62.8
	现场	2D	79.3	72.3	84.8	82.1
	实测	3D	97.9	99.1	96.3	93.6
		4D	100	100	100	100
		1D	46.1	50.5	66.4	74.1
周边 收敛	数值	2D	84.3	86.0	93.1	95.1
	模拟	3D	99.0	98.1	98.3	99.3
		4D	100	100	100	100
		1D	50.0	52.4	71.0	67.2
	现场	2D	77.6	84.1	91.3	90.6
	实测	3D	93.1	98.4	98.6	96.9
		4D	100	100	100	100

表 4 初支位移占比

由表 4 可知:对于不同的监测断面,在距开挖面距 离一定时,初支结构位移量占稳定位移量的比例各不 相同。当隧道埋深 H 不同时,由式(1)~(3)可知围岩 原始应力σ不同,导致开挖时所形成的释放荷载不同, 进而引起的支护结构位移占比不同;对于同一个监测 断面,随着与开挖面之间距离的增加,初支结构位移量 占稳定位移量的比例逐渐增加。当隧道埋深 H 不变 时,围岩原始应力σ为定值,随着开挖面的推进荷载释 放系数不断变化,进而导致释放荷载的不同,从而引起 不同的位移量。因此,支护结构位移控制基准值的制 定需同时考虑监测断面的埋深和开挖间距。 根据围岩荷载的空间释放效应以及模拟与实测数 值的变化规律,结合监测断面与掌子面距离的大小,将 隧道纵向划分为0~1D、1D~2D、>2D 共3个区段。 根据隧道的埋深,分为0~1D、1D~2D 两个区段。根 据表4选取模拟计算、现场实测两种分析方式中的占 比最大值并进行取整,得出不同埋深、不同开挖距离情 况下初期支护位移控制基准建议值,见表5。

表 5 浅埋隧道支护结构位移控制基准建议值

此测话日	र्ष्ट्र स	不同埋深位移控制基准建议值		
盖 例 坝 日	叱芮	$0 \sim 1D$	$1D \sim 2D$	
	$0 \sim 1D$	60% U	70 % U	
拱顶沉降	$1D\sim 2D$	80% U	90% U	
	> 2D	$100 \frac{0}{0} U$	100% U	
周边收敛	$0 \sim 1D$	$50\% U_{\scriptscriptstyle 0}$	$75\% U_{\circ}$	
	$1D\sim 2D$	$85 \% U_{\scriptscriptstyle 0}$	$95\% U_{ m o}$	
	> 2D	$100 {}^{o}_{ m O} U_{ m o}$	$100\% U_{\scriptscriptstyle 0}$	

注:极限位移值U、U。按规范取值。

5 结论

依托在建杭绍台高速公路尖山1号隧道,采用理 论分析、数值模拟、现场实测相结合的方法,对浅埋隧 道初期支护结构位移变化规律进行研究,得到以下 结论:

(1)由于浅埋隧道的特殊工况,为保证施工安全 需对初支结构进行位移监测。支护结构位移控制基准 值是确定工程管理等级,采取应对措施的重要依据,但 现有规范在位移控制基准值选取方面较为模糊,需结 合实际情况制定。

(2)隧道开挖时,围岩的释放荷载与隧道的埋深 以及开挖间距的大小有着密切的关系。释放荷载的不同,导致作用于支护结构上的荷载不同。

(3)根据分析结果得到了支护结构位移变形的规律,将隧道埋深分为0~1D、1D~2D区段,距开挖面距离分为0~1D、1D~2D、>2D共3个区段,并给出了各个区段内位移控制基准建议值。

参考文献:

- [1] 邓伟,葛允雷,杨果林,等.基于新奥法浅埋隧道的围岩压 力计算方法[J].中外公路,2018(5).
- [2] 李贤,蔡林真.某软岩隧道变形规律和二衬最佳支护时机 选择研究[J].中外公路,2019(3).