DOI:10.14048/j.issn.1671-2579.2021.03.029

T形梁桥单面受火后荷载横向分布系数研究

陈俊¹,马涛¹,李红²

(1. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430056; 2. 武汉理工大学 交通学院)

摘要:为了研究 T 形梁遭受单面火灾后,预应力混凝土 T 形梁桥荷载横向分布系数随延 火时间的变化规律,采用 Ansys 建立实体有限元模型,施加不同的火灾工况,换算 T 梁截面 在高温下的刚度折减,计算受火后梁的荷载横向分布系数并对其时延变化规律进行分析。结 果表明:T 梁桥在单面受火后,荷载横向分布系数无明显变化。

关键词:桥梁火灾;弹性模量;T梁;温度场;荷载横向分布系数

随着中国经济的发展,基础设施建设的需求日益 增加,作为基础设施建设中比较重要的一环,预应力混 凝土 T 形梁桥在实际工程中得到了广泛的运用。目 前,T 形梁桥的火灾研究很有限,在该类桥型发生火灾 后,缺乏理论基础对其进行针对处理。对 T 形梁桥在 火灾后的结构力学特点进行探讨具有工程实用价值。

20世纪初,国外就已经开始研究建筑结构抗火的 相关内容,并成立了如新西兰建筑研究协会和美国建 筑结构火灾实验室等研究协会,为以后的发展打下了 良好的基础。20世纪60年代,国外学者就开始了PC 混凝土简支板的抗火研究,随后,进一步分析了PC 混 凝土的耐火性能并对其耐火性提出要求。唐皓以预应 力混凝土T形梁桥为例,通过有限元数值模拟计算与 实例对比分析,研究其受力性能。根据桥梁结构在不 同火灾温度下的应力损伤,提出了火灾后桥梁结构损 伤评估流程;王翠娟就多梁式T形梁桥进行研究,分 析了不同部位遭受火灾下桥梁的形变和应力规律。以 分层算法为基础,创建了T形梁桥遭受火灾后的剩余 承载力与剩余刚度计算模型;李国强等描述了混凝土 结构的抗火性能研究现状、趋势和研究前沿与重要科 学问题,并进一步推测2011—2020年的战略研究重点 方向。

针对预应力混凝土 T 梁桥荷载横向分布系数在 单面受火时的研究较小,该文采用 Ansys 建立实体有 限元模型,分析 T 形梁桥在单面受火时的温度变化, 并探讨单面受火时 T 形梁桥荷载横向分布系数的变 化特征。

1 有限元模型建立

该文以 30 m 简支 T 形梁桥为例,分析单面梁受 火时 T 形梁桥荷载横向分布系数的时延变化规律。 建立实体有限元模型,混凝土选用 Solid 单元。

分析类型采用瞬态分析,定义各类计算参数与 HC 温升曲线,即碳氢化合物温升曲线,设置单面受火 火灾工况,并采取 120 min 的延火时间。

2 温度场分析

2.1 火灾工况设计

为研究单面受火时预应力混凝土 T 形梁桥的温 度场分布情况,设计了两种火灾工况,见表1。

表 1 预应力混凝土简支 T 形梁桥火灾工况

工况	工况名称	受火面	温升曲线	受火长度/m	延火时间/min	受火中心
1	PC1	腹板底部	HC	10	60,120	L/2
2	PC2	桥面	HC	10	60,120	L/2

收稿日期:2020-11-05(修改稿)

基金项目:山西交通控股集团有限公司科技项目(编号:19-JKKJ-8)

作者简介:陈俊,男,高级工程师.E-mail:3325794@qq.com

2.2 温度云分析

对两种火灾工况进行温度场分析,研究预应力混 凝土 T 梁桥在火灾作用下 T 梁截面的温度分布情况。 PC1 工况下的跨中截面在延火 60、120 min 的温度云 图见图 1。T 梁在受火时,温度沿受火面呈层状分布, 随着延火时间增加,温度逐渐由 T 梁受火面向 T 梁内 部扩散。延火 60 min 时,温峰达 1 099.98 ℃;延火 120 min 时,温峰达 1 100 ℃,说明 60 min 时受火面温 度已经接近最大值,延火时间继续增加,温峰不发生变 化,混凝土内部温度继续增加。

图 1 PC1 工况腹板底部受火温度云图(单位:℃)

PC2 工况下的跨中截面在延火 60、120 min 的温 度云图见图 2。延火 60 min 时,桥面铺装层与防水层 处于高温带中,T 梁只有少许区域温度升高。延火时 间为 120 min 时,高温区域向内部扩散,但 T 梁处于 高温下的区域相对较少。PC1 工况腹板底部 5~40 cm 深度处的混凝土温度时程曲线见图 3,远离受火面 的混凝土温度较低。

3 火灾下预应力混凝土T梁桥荷载横 向分布系数分析

3.1 基本假定

(1) 在受火后,T 梁仍适用修正偏心压力法的计算原理。

(2) 在高温状态下,混凝土计算的平截面假定、各向同性假定和小变形假定均未发生改变。

(3) 计算时不考虑钢筋对荷载横向分布系数的影响。

图 3 PC1 工况腹板底部温度时程曲线

3.2 弹性模量换算

混凝土材料在高温下技术参数会劣化,性能会下降,但是不同层位的混凝土温度不同,因此混凝土材料的实际技术参数也不同,为了便于进行理论研究,用虚 拟层的概念对 T 梁截面进行分层模拟,模拟不同刚度 的混凝土结构层,即虚拟层组合梁刚度等效原理。基 于材料的自身特性,每一层材料对截面刚度均有贡献, 每层材料刚度的总和即为截面的总刚度。计算公式 如下:

$$EA = \sum E_i A_i \tag{1}$$

$$EI = \sum \left(E_i I_i + E_i A_i d_i^2 \right) \tag{2}$$

式中:E 为常温下混凝土弹性模量;I 为 T 梁的抗弯惯 性矩; E_i 为第 i 层混凝土截面的弹性模量; I_i 为第 i层截面的抗弯惯性矩; A_i 为第 i 层截面的面积; d_i 为 第 i 层截面至中性轴的距离。

郑文忠等对混凝土在经历高温后的弹性模量降低 情况进行了大量的研究,建立了科学可靠的计算公式。 计算公式如下:

$$E_{cr}(T) = \begin{cases} \begin{bmatrix} 1.03 - 1.61(T/1\ 000)E_c \end{bmatrix}, T \leq 300 \ \Column{2}{\circ} \\ (2.498e^{-0.005\ 04T})E_c \end{bmatrix}, T > 300 \ \Column{2}{\circ} \\ \end{cases}$$

式中:*E_c*(*T*)为混凝土在温度为*T*时的弹性模量;*E_c*为混凝土的初始弹性模量。

在 T 梁的跨中截面设置温度测点,并在 Ansys 中

获取该测点在不同时间段的温度。T梁翼缘选取6个测点,每个测点间距3 cm;T梁腹板两侧选取8个测点,每个测点间距3 cm。以PC2工况下T梁翼缘板受火为例,根据混凝土在高温下弹性模量的折减,计算 翼缘板混凝土厚度 *h* = 3、6、9、12、15 cm 在不同延火时间时的弹性模量,弹性模量换算系数见表2。

表 2 PC2 工况下 T 梁翼缘板弹性模量换算系数(h=0~15 cm)

. /	PC2 工况下不同翼缘板厚度(cm)时的弹性模量换算系数										
t/ min	$0 \sim 3$		3~	3~6		$6 \sim 9$		9~12		12~15	
111111	$T/^{\circ}\mathbb{C}$	λ	T/℃	λ	$T/^{\circ}\mathbb{C}$	λ	$T/^{\circ}\mathbb{C}$	λ	$T/^{\circ}\mathbb{C}$	λ	
5	23	1.000	22	1.002	21	1.003	21	1.003	20	1.003	
10	39	0.978	32	0.988	28	0.994	26	0.996	25	0.997	
20	94	0.906	75	0.932	65	0.945	60	0.952	57	0.955	
40	208	0.758	181	0.793	167	0.811	159	0.822	155	0.827	
60	298	0.639	270	0.676	256	0.694	248	0.705	244	0.710	
80	368	0.499	341	0.553	328	0.580	320	0.596	316	0.605	
100	424	0.301	399	0.435	386	0.461	379	0.477	375	0.484	
120	470	0.240	446	0.272	434	0.288	427	0.298	423	0.302	

注:T 为混凝土在不同延火时间的温度(℃);λ 为混凝土在高温下的弹性模量折减系数。

3.3 预应力混凝土 T 梁桥荷载横向分布系数计算分 析

根据修正偏心压力法计算 T 梁桥的荷载横向分 布系数,不考虑钢筋的影响,计算原理如下:

$$EI_{\rm T} = \sum_{i=1}^{N} E_i c_i b_i t_i^3 \tag{4}$$

$$\beta = \frac{1}{1 + \epsilon \frac{GI_{\rm T}}{EI} \left(\frac{l}{B}\right)^2} \tag{5}$$

$$\eta_{ki} = \frac{I_{K}}{\sum_{i=1}^{n} I_{i}} \pm \beta \frac{ea_{k}I_{k}}{\sum_{i=1}^{n} a_{i}^{2}I_{i}}$$
(6)

$$x = \frac{B\eta_{k1}}{\eta_{k1} - \eta_{k5}} \tag{7}$$

$$m_{eq} = \frac{1}{2} \cdot \frac{\eta_{k1}}{x} (x_{q1} + x_{q2} + x_{q3} + x_{q4})$$
(8)

$$\gamma = \sum_{i=1}^{5} \eta_{ki} \tag{9}$$

式中:b、t为相应单个矩形截面的宽度、厚度;c为矩形 截面抗扭刚度系数; I_{T} 为T梁截面换算抗扭惯性矩; ϵ 为与主梁根数有关的系数;G为混凝土的剪切模量,取 0.425E;l为桥长;B为桥宽; η_{ki} 为任意k号梁的横向 影响线竖标; I_k 为任意k号梁的抗弯惯性矩; I_i 为i号梁的抗弯惯性矩; a_k 为k号梁的梁位; a_i 为i号梁 的梁位; e 为偏心距; x 为影响线零点距 1[#]梁轴线的 距离; η_{k1} , η_{k2} 为 k 号梁横向影响线的两个控制竖标 值; m_{eq} 为荷载横向分布系数; x_{qi} 为影响线零点至汽 车车轮的横向距离, i = 1, 2, 3, 4。

计算受火时所有梁的横向分布系数,对比分析桥 面受火及腹板底部受火两种火灾工况,计算结果见表 3、4,表中γ为5片梁影响线竖标值之和。

由表 3、4 可知:① 在 PC1 工况下,1^{*}~5^{*}梁的截 面材料特性衰减程度相当,抗弯惯性矩由最大的 0.463 m³减小至 0.311 m³,抗扭惯性矩由最大的 0.066 m³减小至 0.053 m³,抗扭修正系数由 0.609 衰 减至 0.565,各梁影响线竖标值之和无变化,荷载横向 分布系数变化不明显;② 在 PC2 工况下,1^{*}~5^{*}梁的 截面材料特性衰减程度相当,抗弯惯性矩由最大的 0.463 m³减小至 0.380 m³,抗扭惯性矩由最大的 0.066 m³减小至 0.064 m³,抗扭修正系数由 0.609 衰 减至 0.567,各梁影响线竖标值之和无变化,荷载横向 分布系数变化不明显。计算时主要考虑刚度的时程衰 减而导致的荷载横向分布系数变化,在此过程中由于 混凝土有效截面的减少而导致的刚度衰减较难计算, 且通常采取混凝土强度换算的方式来进行有效截面的 计算。

		衣り	PCI上元	1~~5~ 4	₭何 软 (性)	可分 巾 杀 奴 1	「昇萡禾		
梁号	t/min	I/m^3	$I_{\rm T}/{ m m}^3$	β	η_{k1}	$\eta_{{}^{k5}}$	γ	x/m	$m_{\it eq}$
	0	0.463	0.066	0.609	0.444	-0.044	1.000	6.827	0.471 5
	5	0.461	0.066	0.608	0.443	-0.043	1.000	6.834	0.471 3
	10	0.428	0.064	0.598	0.439	-0.039	1.000	6.885	0.470 1
	20	0.394	0.061	0.587	0.435	-0.035	1.000	6.943	0.468 9
$1^{\#}/5^{\#}$	40	0.359	0.058	0.577	0.431	-0.031	1.000	6.999	0.467 7
	60	0.338	0.056	0.571	0.428	-0.028	1.000	7.033	0.467 0
	80	0.326	0.055	0.568	0.427	-0.027	1.000	7.048	0.466 7
	100	0.316	0.054	0.566	0.427	-0.027	1.000	7.061	0.466 5
	120	0.311	0.053	0.565	0.426	-0.026	1.000	7.066	0.466 3
	0	0.463	0.066	0.609	0.261	0.139	1.000	16.060	0.417 9
	5	0.461	0.066	0.608	0.261	0.139	1.000	16.084	0.417 9
	10	0.428	0.064	0.598	0.260	0.140	1.000	16.290	0.417 9
	20	0.394	0.061	0.587	0.259	0.141	1.000	16.520	0.417 8
$2^{\#}/4^{\#}$	40	0.359	0.058	0.577	0.258	0.142	1.000	16.747	0.417 6
	60	0.338	0.056	0.571	0.257	0.143	1.000	16.885	0.417 4
	80	0.326	0.055	0.568	0.257	0.143	1.000	16.944	0.417 2
	100	0.316	0.054	0.566	0.257	0.143	1.000	16.993	0.416 9
	120	0.311	0.053	0.565	0.257	0.143	1.000	17.014	0.416 6
	0	0.463	0.066	0.609	0.200	0.200	1.000	_	0.400 0
	5	0.461	0.066	0.608	0.200	0.200	1.000	_	0.400 0
	10	0.428	0.064	0.598	0.200	0.200	1.000	_	0.400 0
	20	0.394	0.061	0.587	0.200	0.200	1.000	_	0.400 0
3 #	40	0.359	0.058	0.577	0.200	0.200	1.000	_	0.400 0
	60	0.338	0.056	0.571	0.200	0.200	1.000	_	0.400 0
	80	0.326	0.055	0.568	0.200	0.200	1.000	_	0.400 0
	100	0.316	0.054	0.566	0.200	0.200	1.000	_	0.400 0
	120	0.311	0.053	0.565	0.200	0.200	1.000	_	0.400 0

表 3 PC1 工况 1[#]~5[#]梁荷载横向分布系数计算结果

表 4 PC2 工况 1[#]~5[#] 梁荷载横向分布系数计算结果

梁号	t/\min	I/m^3	$I_{\rm T}/{ m m}^3$	β	$\pmb{\eta}_{k1}$	$\eta_{{}^{k5}}$	γ	x/m	$m_{_{eq}}$
	0	0.463	0.066	0.609	0.444	-0.044	1.000	6.827	0.471 5
	5	0.463	0.066	0.609	0.444	-0.044	1.000	6.827	0.471 5
	10	0.462	0.065	0.609	0.443	-0.043	1.000	6.831	0.471 4
	20	0.456	0.065	0.606	0.442	-0.042	1.000	6.845	0.471 1
$1^{\#}/5^{\#}$	40	0.440	0.065	0.599	0.439	-0.039	1.000	6.883	0.470 2
	60	0.427	0.065	0.592	0.437	-0.037	1.000	6.917	0.469 5
	80	0.413	0.065	0.585	0.434	-0.034	1.000	6.955	0.468 6
	100	0.397	0.064	0.577	0.431	-0.031	1.000	7.001	0.467 7
	120	0.380	0.064	0.567	0.427	-0.027	1.000	7.055	0.466 6

续表4									
梁号	t/\min	I/m^3	$I_{\rm T}/{\rm m}^3$	β	$\pmb{\eta}_{k1}$	$\eta_{{}^{k5}}$	γ	x/m	$m_{\scriptscriptstyle eq}$
	0	0.463	0.066	0.609	0.261	0.139	1.000	16.060	0.417 9
	5	0.463	0.066	0.609	0.261	0.139	1.000	16.060	0.417 9
	10	0.462	0.065	0.609	0.261	0.139	1.000	16.073	0.417 9
	20	0.456	0.065	0.606	0.261	0.139	1.000	16.130	0.417 8
$2^{\#}/4^{\#}$	40	0.440	0.065	0.599	0.260	0.140	1.000	16.281	0.417 6
	60	0.427	0.065	0.592	0.259	0.141	1.000	16.419	0.417 4
	80	0.413	0.065	0.585	0.259	0.141	1.000	16.570	0.417 2
	100	0.397	0.064	0.577	0.258	0.142	1.000	16.755	0.416 9
	120	0.380	0.064	0.567	0.257	0.143	1.000	16.971	0.416 6
	0	0.463	0.066	0.609	0.200	0.200	1.000	_	0.400 0
	5	0.463	0.066	0.609	0.200	0.200	1.000	_	0.400 0
	10	0.462	0.065	0.609	0.200	0.200	1.000	_	0.400 0
	20	0.456	0.065	0.606	0.200	0.200	1.000	_	0.400 0
3 #	40	0.440	0.065	0.599	0.200	0.200	1.000	_	0.400 0
	60	0.427	0.065	0.592	0.200	0.200	1.000	_	0.400 0
	80	0.413	0.065	0.585	0.200	0.200	1.000	_	0.400 0
	100	0.397	0.064	0.577	0.200	0.200	1.000	_	0.400 0
	120	0.380	0.064	0.567	0.200	0.200	1.000	_	0.400 0

将各梁参数随延火时间的变化进行拟合,结果如 图 4、5 所示。

图 4 PC1 工况下 1[#]~5[#] 梁参数变化示意图

图 5 PC2 工况下 1[#]~5[#] 梁参数变化示意图

由图 4、5 可知:① 在 PC1、PC2 工况中,1*~5* 梁影响线竖标值之和均未发生变化,均为 1;各梁荷载 横向分布系数基本无变化,这主要是因为 1*~5*梁 均处于火灾下,各梁材料性能衰减速度一致,高温下的 换算截面刚度相同,计算所得各项参数也相同;② 在 单面受火时,T 梁桥的荷载横向分布系数基本无变化, 与延火时间无关。

4 结论

(1) 建立了有限元模型,研究了 HC 温升曲线下, T 梁桥在单面受火时的温度分布情况,发现混凝土截 面的温度分布沿受火面呈层状分布。

(2) 假定了该文计算的前提条件,引用了混凝土 在高温下的弹性模量换算公式,介绍了该文计算所采 用的虚拟层合梁刚度等效原理。

(3) 基于该文的温度场结果和计算模型,计算并 分析 T 梁跨中截面在不同火灾工况下的荷载横向分 布系数随延火时间的变化规律。结果表明:T 梁桥在 单面受火时,其荷载横向分布系数变化与受火面无关; 同时,各梁荷载横向分布系数基本无变化。这对实际 工程管养人员在火灾后对 T 梁进行准确的评估以及 加固处理,具有一定的参考意义。