DOI:10.14048/j.issn.1671-2579.2021.03.020

重剪比对板柱节点抗震性能的影响

凌飞鹏¹,刘国梁²,刘世建^{3*},韦港荣⁴

(1.广西路桥工程集团有限公司,广西南宁 530200; 2.长沙市西工建设有限公司;3.广西交科集团有限公司; 4.广西北部湾投资集团有限公司)

摘要:针对重剪比分别为 0.3、0.5、0.7 的 3 个板柱节点试件进行了抗震试验,并通过 Abaqus 有限元软件将模拟结果与试验结果进行了对比,研究了重剪比对无抗冲切钢筋的板 柱节点抗震性能的影响。结果表明:试验结果与模拟结果拟合较好,重剪比增加,试件的不平 衡弯矩承载力降低,同时耗能能力也减弱。重剪比最低的 S1 试件仅发生局部冲切破坏,其余 试件均发生完全冲切破坏,一定程度上可认为重剪比越大,板柱节点的抗震性能越弱。同时 该文对中、美、欧 3 种规范计算结果与试验结果和历史数据进行了对比,发现中美两国规范计 算出的不平衡弯矩相比实际情况较大,而欧洲规范计算结果贴合实际,原因可能是欧洲规范 计算时考虑了配筋率的影响,且在重剪比大于 0.3 时需对中国规范计算结果进行修正,修正 后的结果更符合设计且离散度明显降低。

关键词:板柱节点;重剪比;Abauqs有限元;抗震性能;破坏形式

1 前言

板柱结构顾名思义是以板与柱承重的结构体系, 因其具有可缩短施工工期、降低造价等优点,常用于仓 库、办公楼等建筑中,而相比于传统钢筋混凝土框架结 构,无冲切钢筋的板柱结构的抗侧刚度较低、抗震性能 较差。1985年的墨西哥地震导致近100幢板柱结构房 屋遭到不同等级破坏。

国内外专家学者对板柱节点的抗震性能进行了大 量研究。Stefano等针对低配筋率的板柱节点,以结构 尺寸为研究变量,分别进行了 1/2 缩尺、全尺寸、2 倍 尺寸的 3 组试验,以研究尺寸效应对板柱节点抗冲切 性能的影响;Megally等针对配置栓钉的板柱节点进 行了试验研究,并以栓钉布置方式、重剪比等为变量研 究了栓钉对板柱节点抗震性能的影响,研究表明:重剪 比对板柱节点的层间位移角有较大影响,增大重剪比 可在一定程度上提高板柱节点抗震性能的影响,研究 表明重剪比为 0.4 以下时板柱节点的层间位移角达到 1.5%并不发生冲切破坏;唐明等研究了冲切钢筋对板 柱节点抗震性能的影响,结果表明:配置了4肢箍筋的 试件可满足中国规范对板柱节点抗震性能要求。

至目前为止,中国对于无抗冲切钢筋的板柱节点 的研究多集中于静力试验,而很少研究板柱节点的抗 震性能,现有试验的加载方式大多与结构实际受力状 态存在区别。且中国规范对于钢筋混凝土板柱节点的 应用有较多限制,因此该文以重剪比为试验变量,对无 抗冲切钢筋的板柱节点进行试验研究,并基于 Abaqus 有限元平台对试验结果进行验证,研究重剪比对板柱 节点抗震性能的影响,并核验基于静力试验建立的抗 冲切公式的正确性,以其为板柱节点的抗震性能研究 和相关规范修订提供试验依据。

2 试验方案与数值模拟

2.1 试件设计

试件原型为7层钢筋混凝土板柱结构,见图1。

原结构层高 3 m,每跨间距 7.5 m,板厚 0.23 m, 取原结构中的内柱节点为研究对象,以 1/2 的比例进 行缩尺。反弯点位置为 1/4 跨度处。

试验共设计3个试件,编号为S1~S3,各试件的

收稿日期:2020-03-12

基金项目:国家重点研发计划一政府间国际科技创新合作重点专项一中美政府间合作项目(编号:2017YFE0103000)

作者简介:凌飞鹏,男,硕士,高级工程师. E-mail:17318927@qq. com

^{*}通信作者:刘世建,男,硕士,教授级高工.E-mail:619234134@qq.com

几何尺寸、配筋率等均相同,仅重剪比不同,根据材性 试验测得的混凝土强度标准值计算得一般条件下试件 重剪比为 0.5,设计 S1~S3 试件的重剪比分别为 0.3、 0.5、0.7。各试件的纵筋均为双层双向布置,且板顶配 筋率均为 0.8%,各试件如图 2 所示。

图1 原结构几何示意图(单位:mm)

图 2 各试件几何示意图(单位:mm)

2.2 材料参数

各试件均采用 C40 混凝土,纵筋为直径 12 mm 的 HRB400 钢筋,经材性试验测得各试件混凝土立方体平 均抗压强度 f_{cu} 与钢筋屈服强度 f_y 见表 1。

表1 材料主要参数

试件名称	f_{cu}/MPa	f_y/MPa	重剪比	
S1	40.0	421.0	0.3	
S2	41.2	421.0	0.5	
S3	39.3	421.0	0.7	

2.3 加载方案

试验加载设备为大型多功能结构试验系统,竖向 加载使用反力架和 2 个 150 t 作动器,行程为 0~400 mm,水平向主动跟随;水平向加载使用反力墙和 1 个 100 t 作动器,行程为±500 mm。试验力测量范围为 (4%~100%)(满量程),示值精度为±1%;位移分辨 率为 0.01 mm。

加载分为两部分:第1部分为静力加载,在柱底施 加10 kN/m² 的轴向荷载;第2部分为以位移控制加载 的低周往复荷载,位移增量为5 mm,加载曲线见图3。

2.4 数值模拟

混凝土与钢板采用实体单元 C3D8R,钢筋采用桁 架单元 T3D2,忽略钢筋与混凝土之间的黏结作用,使 用 Abaqus 中的 embedded 命令将钢筋嵌入混凝土中。 混凝土采用塑性损伤本构模型,依据受压及受拉损伤 因子模拟混凝土在地震过程中的刚度退化,使用能量 法计算损伤因子;塑性损伤本构模型如图 4 所示;钢筋 本构模型采用理想弹塑性双折线模型,如图 5 所示。

图 4、5 中: ϵ_t 为拉应变; σ_t 为非弹性拉应力; σ_t 。为 弹性极限拉应力; E_0 为初始弹性模量; d_t 为受拉损伤 演化参数; $\tilde{\epsilon}_t^{tk}$ 为受拉开裂应变; $\tilde{\epsilon}_t^{cl}$ 为初始刚度下弹性 拉应变; $\tilde{\epsilon}_t^{tl}$ 为等效塑性拉应变; $\tilde{\epsilon}_t^{cl}$ 为可恢复的拉伸弹 性应变。

3 试验结果与有限元验证

3.1 破坏形态

各试件板顶裂缝见图 6。

图 4 混凝土塑性损伤模型应力应变曲线图

图 5 钢筋本构模型图

由图 6 可知:当只有竖向荷载作用时,S2 与 S3 试 件的裂缝呈放射状延伸至四周,而 S1 试件的裂缝仅延 伸至两个方向。各试件的裂缝形态与位置有较大差 异。在水平加载过程中,各试件均发生冲切破坏,其中 重剪比最高的 S3 试件在加载前就已出现对角裂缝。 S1 的重剪比最低,水平加载至 0.5% 层间位移角时开 始出现裂缝,加载至 2.25% 时已完成第 1 个加载循 环,在除西面外的另三面开始形成主裂缝,S1试件此

时已失去水平承载力,但仍可以承受竖向荷载,仅局部 发生冲切破坏。对于 S3 试件,水平加载至 0.75%位 移角时柱周主裂缝已成环状,试件整体发生冲切破坏。 对于 S2 试件,加载至 1.25%位移角时试件发生整体 冲切破坏,虽相较 S1 试件发生破坏时间较早,但其发 生破坏后仍可承受竖向荷载。

总体而言,重剪比最低的 S1 试件发生局部冲切破 坏,而 S2 与 S3 试件发生整体冲切破坏。S1~S3 发生 屈服时所对应的加载大小分别为 1.2%、0.76、0.5% 层间位移角,发生破坏时所对应的加载大小分别为 2.2%、1.3%、0.76%层间位移角。由此可发现:在其 余条件相同的情况下,重剪比是影响板柱结构破坏形 式的重要因素,重剪比越大,板柱结构发生破坏时需要 的荷载越小,对结构抗震性能的影响越不利。

3.2 滞回性能

图 7 为试验得到的荷载一位移滞回曲线。图中曲 线面积为低周往复荷载作用一周时结构的耗能,曲线 形状越饱满表示结构抗震性能越好。 由图 7 可知:各试件模拟结果与试验结果拟合较 好。S1 与 S2 试件的滞回曲线明显较为饱满,表明其 抗震性能良好,S1 试件的重剪比最低,其承载力最高, S2 其次,且 S1 与 S2 试件的承载力明显高于 S3 试件。

滞回曲线的面积表明该试件的耗能大小,由图 7 可知:S1 试件的耗能能力最强,S3 试件的耗能能力最 弱。相比于 S3 试件,S1 与 S2 的耗能能力分别提高了 48.3%与 35.7%。

由上可知:板柱结构承受的竖向荷载越大,其板顶 的开裂情况越严重,从而降低试件的耗能能力。在水 平加载阶段,高重剪比的试件其破坏更严重,钢筋屈服 速度更快,承载力更低,从而可认为高重剪比试件的抗 震性能较差。

4 各国规范对比

中国规范与美国规范认为,不平衡弯矩的60%由

图 7 各试件滞回曲线

受弯钢筋传递,40%由混凝土临界截面的线性剪应力 传递,中、美、欧洲规范计算不平衡弯矩的公式分别见 式(1)~(3)。

$$M_{GB} = \min\left\{\frac{5(F_l - V_g)I_c}{u_m h_0(c + h_0)}, \frac{M_{f,1} + M_{f,2}}{0.6}\right\}$$
(1)

式中: M_{GB} 为不平衡弯矩(中国规范); F_l 为混凝土抗 冲切承载力; I_c 为极惯性矩; $M_{f,1}$ 与 $M_{f,2}$ 分别为板顶 与板底的钢筋抗弯承载力; u_m 为临界周长; V_g 为重力 荷载。

$$M_{ACI} = \min\left\{\frac{5(V_c - V_g)J_c}{u_m h_0(c + h_0)}, \frac{M_{f,1} + M_{f,2}}{0.6}\right\}$$
(2)

式中:*M_{ACI}*为不平衡弯矩(美国规范);*V_c*为混凝土抗冲切承载力;*J_c*为极惯性矩。

$$M_{Ed} = \frac{5}{3} \left(V_{Rd,c} - \frac{V_g}{u_1 h_0} \right) W_1 h_0$$
(3)

式中:*M_{Ed}*为不平衡弯矩(欧洲规范);*V_{Rd,c}*为混凝土 剪应力;*W*₁为临界周长的函数。

将该文试验结果及有关参考文献数据,分别与 3 种规范计算结果进行对比,结果见表 2。

由表2可知:由中美规范计算得到的不平衡弯矩 相比实际情况均偏大,使用欧洲规范计算得到的结果 十分贴合实际。由此可知,中美规范均认为不平衡弯 矩的60%由受弯钢筋传递,40%由混凝土临界截面的 线性剪应力传递,而欧洲规范计算方法与中美规范存 在较大差异,考虑了配筋率的影响,是造成计算结果不 同的主要原因。

图 8 为根据表 2 结果绘制的重剪比对不平衡弯矩 的影响。

表	2	试验	结果	与各	国规	范计	算结	果对	٤Ł

项目 –	试验结果		中国规范		美国规范		欧洲规范	
	V_g/kN	$M_u/(\mathrm{kN} \cdot \mathrm{m})$	重剪比 V_g/F_l	$M_{u}/M_{ m GB}$	重剪比 V_g/V_c	$M_{\scriptscriptstyle u}/M_{\scriptscriptstyle ACI}$	重剪比 V_g/V_{Ed}	$M_{\scriptscriptstyle u}/M_{\scriptscriptstyle Ed}$
文献[5]C50	203.4	80.4	0.46	1.08	0.49	1.19	0.52	1.04
文献[5]C50	167.4	110.5	0.38	1.28	0.40	1.38	0.43	1.19
文献[5]C50	131.3	130.7	0.28	1.21	0.28	1.22	0.31	1.08
文献[6]C1	30.4	30.1	0.20	1.66	1.22	1.68	0.26	0.79
文献[6]C2	46.5	35.9	0.31	1.99	0.33	2.01	0.41	0.95
文献[6]C3	39.4	52.2	0.21	1.27	0.23	1.41	0.23	0.91
S1 试件	144.1	136.2	0.28	1.21	0.28	1.22	0.31	1.08
S2 试件	236.3	98.3	0.18	1.22	0.17	1.47	0.19	0.99
S3 试件	312.2	75.3	0.08	1.60	0.09	2.73	0.12	0.85
平均值				1.39		1.60		0.99
标准差				0.37		0.42		0.22

注: M "为依各国规范计算的不平衡弯矩,其他参数见上文。

图 8 重剪比对不平衡弯矩影响

由图 8 可知:当重剪比大于 0.3 时,中美规范存在 高估不平衡弯矩承载力的可能性,偏于不安全,需要对 高剪重比下的计算结果进行修正,采用最小二乘法得 到的线性拟合公式可使计算结果偏于安全,并明显降 低离散度;与中美规范相比,欧洲规范的计算结果对于 重剪比的变化规律较之不明显且离散度较低。

5 结论

针对重剪比分别为0.3、0.5、0.7的3个试件进行

了低周往复加载试验,并将 Abaqus 有限元软件计算 结果与试验结果进行了对比,最后将试验结果与中、 美、欧 3 种规范计算结果进行了对比,得出如下结论:

(1)重剪比是影响板柱节点抗震性能的主要原因,其他条件均相同时,结构的重剪比为 0.3~0.8 可认为重剪比越大,板柱结构的抗震性能越弱。结构的耗能能力、承载能力等均随重剪比的增加而减弱。

(2) 重剪比是影响板柱结构破坏形式的重要因素,重剪比最小的 S1 试件仅发生局部冲切破坏,而 S2 与 S3 试件均发生整体冲切破坏,且重剪比越大,板柱 结构发生破坏时需要的荷载越小,对结构抗震性能的 影响越不利。

(3)中国规范与美国规范对板柱节点的不平衡弯 矩计算结果偏安全,欧洲规范与实际情况十分接近。 而在重剪比大于 0.3 时,需要对中国规范的计算结果 采用最小二乘法得到的线性拟合公式进行部分修正。

参考文献:

- [1] Stefano, JIR SA J O, BAYRAK O. Strength Evaluation of Interior Slab-Column Connections[J]. ACI StructuralJournal, 2008, 105(6):692-700.
- [2] MEGALLY S, GHALI A. Punching Shear Design of Earthquake- Resistant Slab-Column Connections [J]. ACI Structural Journal, 2000, 97(5):720-730.
- [3] PAN A D, MOEHLE J P. An Experimental Study of Slab-Column Connections[J]. ACI Structural Journal, 1992,89(6):626-638.
- [4] 唐明,易伟建.抗冲切钢筋对板柱中节点抗震性能的影响 [J].土木与环境工程学报(中英文),2020(5).
- [5] LUO Y H, DURRANI A J, CONTE J P. Equivalentframe Analysis of Flat Plate Buildings for Seismic Loading[J]. Journal of Structural Engineering, 1994, 120(7): 2 137-2 155.
- [6] MUTTONI A. Punching Shear Strength of Reinforcedconcrete Slabs without Transverse Reinforcement [J]. ACI Structural Journal, 2009, 105(4):440-450.
- [7] 扶长生,吕西林,康婧.柱支承双向板及板柱节点的设计 与研究[J].建筑结构学报,2009(2).
- [8] GB 50010-2010 混凝土结构设计规范[S].
- [9] 赵晋,易伟建,朱泽华.板柱节点冲切破坏后受力性能试验研究[J].建筑结构学报,2015(7).