第41卷 第2期

基于遗传算法的钢斜拉桥成桥索力优化

严松, 颜鹏飞

(中交第二公路勘察设计研究院有限公司,湖北 武汉 430052)

摘要:依托某钢箱梁斜拉桥(50+96+192+70)m,讨论其合理成桥状态的确定原则和 初始成桥索力计算方法,再结合弯曲能量最小法和应力判别法,提出一种基于多目标线性规 划遗传算法的索力优化方法。以能量法确定的初始成桥索力作为遗传算法初始种群,引入索 力均匀系数和能量变化系数作为遗传算法目标函数。编制 Matlab 遗传算法规划程序,利用 Midas/Civil 模型得到的相关索力影响矩阵等作为程序读入数据,进行多目标线性规划下的 合理成桥索力优化计算,避免了以往单一优化方法的不理想结果。

关键词:钢箱梁斜拉桥;合理成桥状态;索力优化;线性规划;遗传算法

钢箱梁斜拉桥主梁一般设计为自重轻、抗扭和横向抗弯刚度较大的扁平钢箱梁。与混凝土斜拉桥相比,钢箱梁斜拉桥的柔度大,耗能效果好,抗震性能好。 斜拉桥设计中需要确定合理成桥状态,根据拟定的施工工序确定合理施工状态后通过各施工阶段对结构线 形和内力分布进行优化和调整,使逐步趋近于合理成 桥状态。钢箱梁斜拉桥恒载索力对合理成桥恒载内力 状态影响很大,可在不考虑几何非线性和收缩、徐变及 温度影响条件下利用斜拉索索力的可调性对成桥内力 状态进行合理的调整与优化。该文依托相关工程背 景,分析其初始成桥索力的确定方法,介绍基于多目标 线性规划遗传算法在恒载下的成桥索力优化方法。

1 斜拉桥合理成桥状态

斜拉桥合理成桥状态是指恒载作用下成桥阶段各 构件的一种理想受力状态,通常取斜拉桥主梁和主塔 中弯曲应变能最小状态作为合理成桥状态,表征成桥 阶段内力分布的好坏。一旦斜拉桥结构体系被确定, 总能找到一组斜拉索索力,使得结构体系在确定性荷 载作用下,某种反映受力性能的目标达到最优。对于 中小跨度钢箱梁斜拉桥,应综合考虑成桥阶段主梁线 形、主梁和主塔弯矩及应力、索力等结构状态。斜拉桥 成桥主梁线形主要以施工阶段主梁立模标高控制为 主,成桥阶段索力调整常以成桥设计索力控制为主,线 优,即可达到对应的合理成桥状态。

2 初始成桥索力确定方法

单一的确定成桥索力的主要构件弯曲能量最小法 并不能使成桥索力最优,但以此初始索力为后期优化 前提的特定约束条件下的遗传算法可以避免索力优化 结果趋于局部最优解,并最终达到理想成桥索力。

选取斜拉桥主要构件的弯曲应变能 U 作为优化 目标函数。对于斜拉桥离散杆系结构:

$$U = \sum_{i=1}^{n} \frac{l_i}{2E_i I_i} M_i^2$$
 (1)

式中:n 为离散结构单元总数;l_i、E_i、I_i、M_i分别为 i 号单元杆件长度、弹性模量、截面抗弯惯性矩和截面 弯矩。

矩阵形式表示为:

$$U = \{M\}^{\mathsf{T}}[B]\{M\}$$

$$\tag{2}$$

式中:{*M*}为弯矩向量;[*B*]为系数对角矩阵,对角元 素为:

$$b_{ii} = l_i / (2E_i I_i), i = 1, 2, \cdots, n$$
 (3)

令优化前弯矩向量为 $\{M_0\}$,施调向量为 $\{\Delta T\}$,优 化后弯矩向量为 $\{M_1\}$,则:

 $\{M_1\} = \{M_0\} + [C]\{\Delta T\}$ $\tag{4}$

式中:[C]为索力对弯矩的影响矩阵,其中元素 C_j 为 索力施调向量 { ΔT } 中 T_j 单位力值变化引起的 { M_1 } 变化量。

将式(4)代入式(2)得:

 $U = c_0 + \{M_0\}^{\mathsf{T}}[B][C] \{\Delta T\} + \{\Delta T\}^{\mathsf{T}}[C]^{\mathsf{T}}[B] \cdot \{M_0\} + \{\Delta T\}^{\mathsf{T}}[C]^{\mathsf{T}}[B][C] \{\Delta T\}$ (5)

合理成桥状态下结构弯曲应变能最小时:

 $\partial U/\partial T_i = 0, \ i = 1, 2, \cdots, m$ (6)

式中:m 为施调拉索组数。

$$[C]^{\mathsf{T}}[B][C]{\Delta T} + [C]^{\mathsf{T}}[B]{M_0} = 0$$
(7)

求解式(7)的 m 阶线性方程组即得到优化前弯矩 $\{M_0\}$ 下结构弯曲应变能最小时的优化索力 $\{T_1\}$ 和对 应优化弯矩 $\{M_1\}$ 。

$$\{T_1\} = \{T_0\} + [A]\{\Delta T\}$$

$$\tag{8}$$

式中:[A]为索力对索力的影响矩阵,其中元素 A_i 为 索力施调向量 { ΔT } 中 T_i 单位力值变化引起的 { T_1 } 变化量。由影响矩阵[B]和[C]的含义可知:

$$2\lfloor C \rfloor^{\mathsf{T}} \lfloor B \rfloor \lfloor C \rfloor = \lfloor \delta \rfloor$$

$$2\lceil C \rceil^{\mathsf{T}} \lceil B \rceil \{M_0\} = \lceil \Delta \rceil$$
(9)

式中右端矩阵[δ]和[Δ]中元素 δ_{ii} 、 Δ_{iP} 写为:

$$\delta_{ij} = \sum \int [\bar{M}_i(s)\bar{M}_j(s)/(E_iI_i)]ds$$

$$\Delta_{ip} = \sum \int [\bar{M}_i(s)M_0(s)/(E_iI_i)]ds$$
(10)

式中: $M_i(s)$ 和 $M_j(s)$ 为单位施调索力 T_i 引起的基本 结构弯矩; $M_0(s)$ 为优化前外荷载引起的基本结构 弯矩。

将式(10)代入式(7)得:

$$\left\{\sum \int \left[\bar{M}_{i}(s)\bar{M}_{j}(s)/(E_{i}I_{i})\right]ds\right\}\left\{T\right\} + \left\{\sum \int \left[\bar{M}_{i}(s)\right] \cdot M_{0}(s)/E_{i}I_{i}\right]ds\right\} = 0$$
(11)

类比力法方程的形式,将上式拓展为包含弯矩项 和轴力项的力法方程:

$$\left\{ \left[\sum \int \frac{\bar{M}_{i}(s)\bar{M}_{j}(s)}{E_{i}I_{i}} ds \right] + \left[\sum \int \frac{\bar{N}_{i}(s)\bar{N}_{j}(s)}{E_{i}A_{i}} ds \right] \right\} \{T\} + \left\{ \left[\sum \int \frac{\bar{M}_{i}(s)M_{0}(s)}{E_{i}I_{i}} ds \right] + \left[\sum \int \frac{\bar{N}_{i}(s)N_{0}(s)}{E_{i}A_{i}} ds \right] \right\} = 0$$

$$(12)$$

式(12)中换 E_iI_i 为 ζE_iI_i (ζ 取较小数,如 0.001),则轴力项相较于弯矩项可忽略不计,式(12)即 与式(11)等同。取主梁刚度足够小时,式(11)表示全 桥一次落架计算的施调索力组 $\{T\}$ 引起的全桥基本结 构[无拉索及外荷载 $M_0(s)$]弯曲应变能正好抵消调 索前外荷载引起的全桥基本结构弯曲应变能。

即以合适倍数缩小斜拉桥有限元模型整体单元刚

度做一次落架计算所得全桥索力为弯曲能量最小时的 初始成桥索力。计算步骤为:①确定斜拉桥结构总体 布置及压重等外荷载 $M_0(s)$;② 按斜拉桥成桥状态设 计参数建立平面杆系有限元模型,单元拉压刚度 E_iA_i 不变,抗弯刚度 E_iI_i 变为 ζE_iI_i ,取 $\zeta = 0.001$;③ 对成 桥施加自重和压重等外荷载进行一次落架线性分析; ④ 反复调整压重等外荷载参数使全桥整体受力尽量 合理。

3 遗传算法索力再优化

单纯追求结构弯曲应变能最小化并不能满足索力 分布均匀性的要求,而索力均匀性调整势必使弯曲应 变能增加。基于初始成桥索力的再优化即利用遗传算 法以若干优化指标为目标函数进行索力的再调整。文 中以控制截面弯矩作为约束条件,提出以索力均匀系 数 α_i 和能量变化系数 β 为目标函数的多目标线性规 划遗传算法模型,使索力均匀性和能量变化指标最优。

取邻近 3 根拉索 T_{i-1} 、 T_i 、 T_{i+1} 定义索力均匀 系数:

$$\alpha_{i} = \left| \frac{T_{i-1} + T_{i+1}}{2T_{i}} - 1 \right| \tag{13}$$

取调整前后弯曲能量 U_0 、 U_1 定义能量变化系数:

$$\beta = \ln \left(\frac{U_1}{U_0} \right) \tag{14}$$

通过式(13)控制全桥索力的均匀性,其值越小越 均匀;式(14)控制调整后结构弯曲应变能变化,不至于 使调整后弯矩分布变得不合理。索力再优化的多目标 函数和约束条件表达式分别为:

$$Min\{Max\{\alpha_i\},\beta\}$$
(15)

$$\int \{M_0\} + \lfloor C \rfloor \{T\} \leqslant \{M_u\}$$
(16)

$$\{M_0\} + [C] \{T\} \geqslant \{M_d\}$$

式中:{M_u}和{M_d}分别为控制截面弯矩上、下限值。

遗传算法(Genetic Algorithm)作为一种复杂系统 优化的自适应概率优化技术在工程优化计算上的运用 前景广阔,式(15)可由基于多目标函数的 Pareto 遗传 算法进行 Matlab 编程计算。

4 应力可行域

为判断得到的最终成桥索力下成桥合理状态主梁 受力是否满足要求,需要进一步结合合理成桥状态下 的应力可行域对主梁恒载应力进行评估。文中钢箱梁 斜拉桥主梁恒载下的截面上、下缘应力的可行域通用 表达式为:

$$\begin{cases} \delta_{u} = -[R_{s}] - \delta_{y} - \delta_{h\min} \\ \delta_{d} = [R_{s}] - \delta_{y} - \delta_{h\max} \end{cases}$$
(17)

式中: $[R_s]$ 为主梁上、下缘钢板屈服应力; δ_y 为成桥索 力对主梁截面的法向应力; δ_{hmin} 和 δ_{hmax} 分别为可变 作用组合下主梁应力包络最小和最大值; δ_u 、 δ_d 分别 为恒载下主梁某截面容许应力上、下限值,且截面上缘 和下缘各对应一组上下限值,区间 [δ_d , δ_u]即为恒载 下主梁上下缘应力可行域。合理成桥状态恒载下的主 梁截面上、下缘应力均在各自应力可行域的合理位置, 可判别主梁受力满足要求。

5 工程应用

某双塔单索面钢箱梁斜拉桥跨径布置为(50+96 +192+70) m=408 m,中心梁高 3.0 m,箱梁顶板宽 度 29.5 m。Z4、Z5 桥塔两侧分别设置 9 对、5 对斜拉 索。拉索编号和结构总体布置如图 1 所示。

图1 结构总体布置图(单位:m)

Midas/Civil 建立的全桥有限元模型采用梁单元 模拟塔、梁和墩,只受拉桁架单元模拟 56 根拉索,如图 2 所示。主墩采用弹性连接中的刚性连接模拟,并调 整局部坐标。斜拉索锚固点、索塔节点与主梁节点之 间均采用刚性连接,拉索锚固点设为从节点。

图 2 有限元模型

根据拟定的合理挂索张拉顺序为 B1、Z1/B14、 Z14→B2、Z2/B13、Z13→B3、Z3/B12、Z12→B4、Z4/ B11、Z11→B5、Z5/B10、Z10→B6、Z6→B7、Z7→B8、Z8 →B9、Z9。在有限元模型施工阶段中按照以上张拉顺 序设置每根拉索施加单位力(1 kN)为一个独立工况,施工分析控制中索力以添加方式施加,计算完成即可整理提取出索力对弯矩的影响矩阵[C]、索力对索力的影响矩阵[A]。文中索力优化方法借助 Matlab 与 Midas/Civil 配合计算,Midas/Civil 计算得到的初始成桥索力作为 Matlab 遗传算法的初始种群,从得到的 Pareto 解集中优选一组索力优化结果作为最终成桥索力。

6 索力再优化结果

如图 3 所示,两系数不能同时取得最优值,索力分 布越均匀则弯曲能量变化越不合理,反之亦然。选取 解集中索力均匀系数 $\alpha = 0.022$ 对应的索力解为最终 优化解,此时能量变化系数 β 约为 0.921,即 $U_1/U_0 \approx$ 2.51 倍(图 3 中标★点)。

图 3 Pareto 解集索力均匀系数与能量变化系数发展曲线

如图 4 所示,初始成桥索力基本满足由近塔端至 远塔端索力分布从小到大渐变的合理趋势,但索力均 匀性较差,个别拉索出现不合理空载和过载现象。结 合表 1 分析,基于遗传算法对初始索力再优化得到的 最终成桥索力分布更合理,均匀系数明显减小。如图 5 所示,索力均匀性优化是以主塔和斜拉索锚固区主 梁弯矩增加为代价,主梁更多地参与受力,但整体弯矩 分布趋于合理。非锚固区主梁弯矩水平变化小,如 Z3 辅助墩最大负弯矩保持为 78 000 kN•m 左右。

拉索	初始成桥	最终成桥	优化前索力	优化后索力
编号	索力/kN	索力/kN	均匀系数	均匀系数
B9	5 169	3 192	_	_
B8	0	3 046	—	0.008
B7	2 333	2 947	0.259	0.018
B6	3 457	2 743	0.153	0.011
B5	3 523	2 597	0.063	0.016
B4	3 146	2 366	0.103	0.002
B3	2 122	2 126	0.194	0.010
B2	1 920	1 843	0.100	0.001
B1	2 102	1 565	0.074	0.094
Z1	1 975	1 582	0.016	0.078
Z2	1 910	1 845	0.104	0.011
Z3	2 242	2 068	0.006	0.003
Z4	2 602	2 302	0.047	0.014
Z 5	2 719	2 473	0.023	0.000
Z6	2 963	2 645	0.070	0.006
Z7	3 620	2 783	0.196	0.000
Z8	2 857	2 921	0.268	0.001
Z9	564	3 052	5.718	0.049
Z10	4 721	2 881	0.664	0.012
Z11	2 612	2 643	0.447	0.010
Z12	2 840	2 353	0.146	0.008
Z13	2 240	2 024	0.179	0.005
Z14	2 440	1 673	0.038	0.106
B14	2 457	1 676	0.046	0.117
B13	2 246	2 072	0.571	0.014
B12	4 601	2 410	0.043	0.018
B11	7 349	2 835	0.638	0.049
B10	727	2 984	_	_

如图 6 所示,最终成桥索力时主梁恒载作用下的 上、下缘应力分布均居中于恒载应力可行域内,表明通 过遗传算法索力再优化得到的最终合理成桥状态满足 主梁合理受力的要求。

7 结语

以弯曲能量最小法为分析前提,基于多目标线性 规划的遗传算法对于钢斜拉桥成桥索力优化的效果理 想。实例分析可知索力优化目标选取及优化效果往往 取决于计算者对于具体结构的理解和优化侧重,并无

图 6 合理成桥状态主梁上、下缘应力范围

绝对的方法优劣之分,需要综合分析各优化目标的效 果并进行合理取舍。文中创新提出以能量法和线性规 划遗传算法结合的分步算法,借助通用计算软件 Matlab 和 Midas/Civil 针对同类型斜拉桥结构的优化计 算是方便可行的。该方法综合了能量法求解初始索力 与遗传算法求解优化目标下成桥索力的优越性。文中 阐述的中等跨径钢斜拉桥索力优化实例的方法可作为 同类型斜拉桥之参考,对于较大跨径和复杂形式的斜